A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

(7) (8) (9) Em notação vectorial, as equações anteriores

Apresentações semelhantes


Apresentação em tema: "(7) (8) (9) Em notação vectorial, as equações anteriores"— Transcrição da apresentação:

1 (7) (8) (9) Em notação vectorial, as equações anteriores
convertem-se em: (7) Substituindo a Eq. da continuidade na Eq. (4) obtém-se (8) Em que D /Dt = d /dt + vx d/dx + yy d/dy + vz d/dx Do mesmo modo a Eq. (7) pode ser re-escrita como: (9)

2 (10-a) (10-b) (10-c) (10-d) (10-e) (10-f)
A equação geral do movimento obtém-se a partir da equação anterior por substituição da lei da viscosidade de Newton, generalizada para as 3 dimensões: (10-a) (10-b) (10-c) (10-d) (10-e) (10-f) A dedução desta equação é relativamente complexa e demorou, segundo Bird et al. (Transport Phenomena, 2002), cerca de século e meio a ser desenvolvida pelos físicos e matemáticos!

3 A substituição da lei da viscosidade
de Newton na Eq. (9) conduz a: (11-a) (11-b) (11-c) Para fluido com m e r constantes as equações anteriores transformam-se na famosa Equação de Navier-Stokes: (12) Para um fluido invíscido obtém-se a Eq. de Euler (1755): (13)

4 Equação da Energia Mecânica
Efectuando o produto interno da velocidade local com a equação do movimento (9), obtém-se: Esta equação é escalar e descreve a taxa de variação da energia cinética por unidade de volume (1/2 v2) de um elemento de fluido. Esta equação pode ainda ser re-escrita por:

5 Equação da continuidade em:
Coordenadas cartesianas Coordenadas cilíndricas Coordenadas esféricas

6 Equação do movimento em coordenadas rectangulares ( x, y, z )
Em termos de  Em termos de gradiente de velocidade para um fluido Newtoniano com  e  constantes

7 Equação do movimento em coordenadas cilíndricas ( r,, z )
Em termos de  Em termos de gradiente de velocidade para um fluido Newtoniano com  e  constantes

8 Equação do movimento em coordenadas esféricas ( r,,  )
Em termos de  Em termos de gradiente de velocidade para um fluido Newtoniano com  e  constantes

9 Componentes do tensor de corte para fluidos Newtonianos.
Coordenadas rectangulares Coordenadas cilíndricas Coordenadas esféricas

10 Análise de Escoamentos com as Equações da Continuidade do Movimento
Escoamento axial de um fluido incompressível num tubo circular Hipótese simplificativas: Equação da Continuidade: Equação do Movimento (componente-z): Então temos: Integrando duas vezes em relação a r com as condições de fronteira, obtém-se:

11 , , Escoamento anular de um fluido Newtoniano
Hipótese simplificativas: Equações do Movimento (r, q, z): (Modelo de Viscosímetro Couette-Hatschek) , , Com as condições de fronteira: Obtém-se por dupla integração:

12 Uma vez conhecendo vq(r) obtém-se trq(r) através seguinte Tabela com as componentes do tensor de corte em coordenadas cilíndricas ( lei da viscosidade de Newton): Substituindo vq(r) na componente assinalada na Tabela obtém-se a seguinte expressão para trq(z): O momento da força necessário para manter o cilindro exterior a rodar à velocidade angular W0 é dado por: Estes sistema são frequentemente usados para medir a viscosidade de fluidos a partir da observação do momento da força e da velocidade angular.


Carregar ppt "(7) (8) (9) Em notação vectorial, as equações anteriores"

Apresentações semelhantes


Anúncios Google