A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Otimização Paramétrica (Cap. 5)

Apresentações semelhantes


Apresentação em tema: "Otimização Paramétrica (Cap. 5)"— Transcrição da apresentação:

1 Otimização Paramétrica (Cap. 5)
AULA COMPUTACIONAL Otimização Paramétrica (Cap. 5) 15 DE SETEMBRO DE 2008

2 5. OTIMIZAÇÃO PARAMÉTRICA
5.1 Conceito de Otimização 5.2 Elementos Comuns em Problemas de Otimização 5.2.1 Variáveis de Decisão (Manipuladas) 5.2.2 Critério 5.2.3 Função Objetivo 5.2.4 Restrições 5.2.5 Região Viável 5.3 Localização da Solução Ótima 5.4 Problemas e Métodos de Otimização 5.5 Método Analítico: problemas univariáveis e multivariáveis. 5.6 Métodos Numéricos: problemas univariáveis e multivariáveis

3 5.6. MÉTODOS NUMÉRICOS São métodos de busca por tentativas. Os métodos podem ser: - Diretos: utilizam apenas o valor da Função Objetivo. - Indiretos: utilizam também o valor da(s) derivada(s) da Função Objetivo (menor números de tentativas mas o esforço computacional é maior). Os pesquisadores buscam desenvolver métodos que atendam às seguintes propriedades: - Eficiência: resolver o mesmo problema com menor esforço. - Robustez: resolver uma variedade maior de problemas.

4 5.6. MÉTODOS NUMÉRICOS 5.6.1 Problemas Univariáveis Método da Seção Áurea Utiliza dois pontos posicionados de forma a manter: (a) simetria em relação aos limites do intervalo (b) fração eliminada constante

5 Base: Retângulo Áureo (esteticamente perfeito, segundo os gregos)
Método da Seção Áurea Base: Retângulo Áureo (esteticamente perfeito, segundo os gregos) Propriedade: removendo um quadrado de lado igual ao lado menor, 1 e 1- resulta um outro retângulo com as mesmas proporções do retângulo original  Razão Áurea

6 Algoritmo da Seção Áurea
Iniciar Repetir Eliminar Região Atualizar Delta Se Convergiu Então Finalizar Colocar Novo Ponto Convergiu Delta  Tolerância

7 Se Convergiu Então Finalizar Colocar Novo Ponto
Iniciar Repetir Eliminar Região Atualizar Delta Se Convergiu Então Finalizar Colocar Novo Ponto L s x i F L i x s F Problema de Mínimo Eliminação de Região Problema de Máximo Eliminação de Região Atualiza  Tolerância ? Novo Ponto F s Atualiza  Tolerância ? Novo Ponto L i s x F F i L i x s F L x x L i s i s Inicialização D = L - L s i x = L + 0,618 D i i 0,618 D x = L - 0,618 D s s 0,618 D

8 5.5 MÉTODO ANALÍTICO 5.5.1 Problemas univariáveis
Exemplo: dimensionamento do extrator W kg B/h Q = kgA/h rafinado y kg AB/kg B xo= 0,02 kg AB/kg A extrato x kgB/kgA Modelo Matemático: 1. Q (xo - x) - W y = 0 2. y - k x = 0 (k = 4) Balanço de Informação: V = 5, N = 2, C = 2, M = 0 G = 1 (otimização) Avaliação Econômica: L = R - C R = pAB W y C = pB W pAB = 0,4 $/kgAB : pB = 0,01 $/kgB

9 Seqüência de Cálculo x y W 1 * * * 2 * * x y W 1 x x o 2 x o
1 * * * 2 * * x y W 1 x x o 2 x o 2. y = k x 1. W = Q (xo - x)/y Restrições de Igualdade !!!

10 Incorporando a L às Restrições de Igualdade ordenadas :
Função Objetivo: L = R - C = pAB W y - pB W Incorporando a L às Restrições de Igualdade ordenadas : 2. y = k x 1. W = Q (xo - x)/y = + a Q p x k AB o B ( ) 105 b 4000 c Qx , 5 L = a - b x - c/x

11 Busca do ponto estacionário:
L = a - b x - c/x 60 Busca do ponto estacionário: x b dL dx c o = - + || 2 01118 , 50 Solução completa do problema: 40 R yo = 0,04472 kg AB/kg B; Wo = 1.972,3 kgB/h; Ro = 35,3 $/h; Co = 19,7 $/h; Lo = 15,6 $/h C L,R,C 30 $/a 20 L o = 15,6 Máximo! L 10 x o =0, 01118 0,006 0,008 0,010 0,012 0,014 0,016 0,018 0,020 0,022 x kgAB/kg A

12 5.6. MÉTODOS NUMÉRICOS 5.6.2 Problemas Multivariáveis Alguns métodos diretos: - Busca Aleatória - Busca por Malhas - Busca Secionada - Simplex (Poliedros Flexíveis) - Hooke & Jeeves Procedimento Geral: (a) seleção de um ponto inicial (base). (b) exploração da vizinhança da base para inferir uma direção de busca. (c) progressão na direção de busca até decisão em contrário. (d) finalização Os métodos diferem quanto à forma de executar a exploração e a progressão.

13 Método de Hooke & Jeeves
ALGORITMO Estabelecer um incremento e uma tolerância para cada variável Escolher uma Base Repetir Explorar a vizinhança da Base (em busca da direção provável do ótimo) Se houve Sucesso em alguma direção Então: Progredir (na direção provável) até haver um Insucesso Senão (proximidade do ótimo): Se Chegou ao Ótimo Então: Finalizar Senão: reduzir os incrementos

14 ? + 2 ? - 1 ? + 1 Base ? - 2 Exploração
Testar a Função Objetivo em cada sentido (incrementos + i e - i) de cada direção (xi) ao redor da Base. Do resultado, depreender a direção provável do ótimo ? + 2 ? - 1 ? + 1 Base ? - 2 A Exploração não pode ser interrompida sem que todas as direções tenham sido testadas.

15 Funções unimodais: o sucesso num sentido dispensa o teste no outro.
Exploração Funções unimodais: o sucesso num sentido dispensa o teste no outro. S: Sucesso I: Insucesso S + 2 0,0 0,2 0,4 0,6 0,8 1,0 0,1 0,3 0,5 y x S - 1 Sucesso Base I - 2 desnecessário buscando máximo

16 Exploração O Sucesso numa tentativa justifica a mudança da Base para a nova posição. A Exploração continua a partir desta melhor posição. S + 2 S - 1 Base I - 2

17 Progredir com duplo incremento até ocorrer um Insucesso
Método de Hooke & Jeeves : Fase de Progressão 22 Insucesso! Permanecer na Base (25) Progredir com duplo incremento até ocorrer um Insucesso x2 + 2 2 +2 1 Sucesso! Mover a Base. Continuar a Progressão 25 Exploração a partir da Base (25) com 1 e 2 . + 2 2 +2 1 15 +1 10 Base + 2 18 Resultado da Exploração x1

18 Senão: reduzir os incrementos Se Chegou ao Ótimo Então: Finalizar
A Base estará suficientemente próxima para ser declarada como o ótimo? Se todos os incrementos estiverem menores do que as tolerâncias, SIM!: Finalizar Se algum deles estiver maior, então este deve ser reduzido à metade. Inicia-se uma nova Exploração à volta da Base com os novos incrementos

19 Senão: reduzir os incrementos Se Chegou ao Ótimo Então: Finalizar x2
9 - 1 7 - 2 +1 10 Base + 2 5 8 + 1 - 1 + 2 - 2 1 > 1 e 2 > 2 : ainda não chegou ao ótimo : 1 = 1 /2 , 2 = 2 /2 x1

20 1 < 1 e 2 < 2 : a Base pode ser considerada o Ponto Ótimo
Se Chegou ao Ótimo Então: Finalizar x2 + 1 - 2 + 2 8 - 1 7 - 2 +1 10 Base + 2 9 5 1 < 1 e 2 < 2 : a Base pode ser considerada o Ponto Ótimo x1

21 Exemplo: dimensionamento de 2 extratores em série
1 2 Q = kgA/h x = 0,02 kgAB/kgA o W kgB/h y kgAB/kgB x kgAB/kgA Modelo Matemático 1. Q(xo - x1) - W1 y1 = 0 2. y1 - k x1 = 0 3. Q(x1 -x2) - W2 y2 = 0 4. y2 - k x2 = 0 Avaliação Econômica L = R - C R = pAB (W1 y1 + W2 y2 ) C = pB (W1 + W2) pAB = 0,4 $/kgAB : pB = 0,01 $/kgB Balanço de Informação: V = 8; N = 4; C = 2; G = 2 (otimização)

22 Exemplo: dimensionamento de 2 extratores em série
W1 x1 y1 W2 x2 y * * * * * * * * * * * Modelo Matemático 1. Q (xo - x1) - W1 y1 = 0 2. y1 - k x1 = 0 3. Q(x1 -x2) - W2 y2 = 0 4. y2 - k x2 = 0 Modelo Matemático 2. y1 = k x1 4. y2 = k x2 3. W2 = Q (x1 – x2)/ y2 1. W1 = Q (xo - x1)/ y1 W1 x1 y1 W2 x2 y o x x x o x o x x x o

23 Incorporando as Restrições de Igualdade à Função Objetivo L
2. y1 = k x1 4. y2 = k x2 3. W2 = Q (x1 – x2)/ y2 1. W1 = Q (xo - x1)/ y1 L = R – C R = pAB (W1 y1 + W2 y2 ) C = pB (W1 + W2) L = a – b/x1– cx2 – d x1/x2 a = pAB Q xo + 2 pB Q / k = 130; b = pB Q xo/ k = 0,5; c = pAB Q = 4000; d = pB Q / k = 25 Buscando o ponto estacionário: L/x1 = b/x12 – d/x2 = 0 x1o = (b2/cd)1/3 = 0,01357 x2o = (d/b) x12 = 0,00921 L/x2 = - c + dx1/x22 = 0 Solução completa: y1o = 0,05428 kgAB/kgB; W1o = kgB/h y2o = 0,03684 kgAB/kgB; W2o = kgB/h Co = 23,68 $/h; Ro = 43,15 $/h; Lo = 19,47 $/h

24 det(H - I) = 0  1 = -0,258106 e 2 = -1,011106
Analisando o ponto estacionário: L/x1 = b/x12 – d/x2 = 0 x1o = (b2/cd)1/3 = 0,01357 x2o = (d/b) x12 = 0,00921 L/x2 = - c + dx1/x22 = 0 det(H - I) = 0  1 = -0,258 e 2 = -1,011106 Máximo!

25 1 2 Q = kgA/h xo = 0,02 kgAB/kgA W1 = kgB/h W2 = kgB/h x1 = 0, kgAB/kgA x2 = 0, kgAB/kgA y1 = 0, kgAB/kgA y2 = 0, kgAB/kgA Estágio Total Soluto Recup. kg/h , , ,90 Solv. Consum. kg/h Lucro $/a , , ,48

26 0,020 0,018 4,0 2,0 8,0 0,016 6,0 0,014 10 16 14 0,012 X 19,5 18 0,010 0,00921 2 0,008 0,006 12 0,004 0,01357 0,002 0,005 0,010 0,015 0,020 0,025 0,030 0,035 X 1

27 Seguem-se todos os resultados possíveis da Exploração em 2 dimensões

28 x2 Direção x1 Unimodalidade: dispensa + 1 Direção x2 Unimodalidade: dispensa + 2 Sucesso: deslocar a Base - 1 10 Base 15 - 2 18 Sucesso: deslocar a Base Direção provável do ótimo x1

29 x2 Direção provável do ótimo Direção x1 Unimodalidade: dispensa + 1 18 Sucesso: deslocar a Base Direção x2 + 2 Sucesso: deslocar a Base - 1 10 Base 15 - 2 12 Insucesso: permanece na Base x1

30 Direção x1 x2 Unimodalidade: dispensa + 1 Direção x2 13 Insucesso: permanecer na Base + 2 Direção provável do ótimo Sucesso: deslocar a Base - 1 10 Base 15 - 2 12 Insucesso: permanecer na Base x1

31 x2 Direção x1 Direção x2 Unimodalidade: dispensa + 2 Sucesso: deslocar a Base - 1 +1 10 Base 15 7 Insucesso: permanecer na Base - 2 Sucesso: deslocar a Base 18 Direção provável do ótimo x1

32 Direção provável do ótimo
x2 Direção x1 Sucesso: deslocar a Base 18 Direção x2 + 2 - 1 +1 Sucesso: deslocar a Base 10 Base 15 7 Insucesso: permanecer na Base - 2 12 Insucesso: permanecer na Base x1

33 x2 Direção x1 Insucesso: permanecer na Base 11 Direção x2 + 2 Sucesso: deslocar a Base - 1 +1 10 Base 15 7 Insucesso: permanecer na Base - 2 Direção provável do ótimo Insucesso: permanecer na Base 12 x1

34 x2 Direção x1 Direção x2 Unimodalidade: dispensa + 2 10 Base - 1 +1 Insucesso: permanecer na Base 7 8 Insucesso: permanecer na Base - 2 Sucesso: deslocar a Base 15 Direção provável do ótimo x1

35 Direção provável do ótimo
x2 Direção x1 Sucesso: deslocar a Base 15 Direção x2 + 2 - 1 +1 Insucesso: permanecer na Base Insucesso: permanecer na Base 7 10 8 Base - 2 Insucesso: permanecer na Base 9 x1

36 x2 Direção x1 Insucesso: permanecer na Base 5 Direção x2 + 2 - 1 +1 Insucesso: permanecer na Base Insucesso: permanecer na Base 7 10 8 Base - 2 Insucesso: permanecer na Base 9 A Base deve estar próxima do ótimo ! x1

37 Método de Hooke & Jeeves
ALGORITMO Estabelecer um incremento e uma tolerância para cada variável Escolher uma Base Repetir Explorar a vizinhança da Base (em busca da direção provável do ótimo) Se houve Sucesso em alguma direção Então: Progredir (na direção provável) até haver um Insucesso Senão: (proximidade do ótimo) Se Chegou ao Ótimo Então: Finalizar Senão: reduzir os incrementos

38 Funções Unimodais O método converge sempre para o único extremo independentemente da base inicial. Os incrementos iniciais afetam apenas o número de tentativas.

39 Funções Multimodais O método pode convergir para extremos locais diferentes dependendo da base inicial e dos incrementos iniciais selecionados. (a) partindo de bases iniciais diferentes pode-se alcançar extremos locais diferentes com os mesmos incrementos iniciais. (b) partindo de uma mesma base inicial pode-se alcançar extremos locais diferentes com incrementos iniciais diferentes f (x) = (x12 + x2 – 11)2 + (x22 + x1 – 7)2

40 Método dos poliedros flexíveis
É um método de busca multivariável (J.A. Nelder e R. Mead, 1964, também chamado de Simplex), onde o pior vértice de um poliedro com n + 1 vértices é substituído por um novo vértice colinear com o vértice antigo e o centróide. Centróide: onde xh,j é o pior vértice.

41 Método dos poliedros flexíveis
O algoritmo envolve quatro operações de busca, que para o caso da minimização da função objetivo têm as seguintes formas: onde é o melhor vértice. Expansão Reflexão Contração Redução

42 Método dos poliedros flexíveis
O critério usado por Nelder e Mead para terminar a busca é o seguinte:

43 DIMENSIONAMENTO POR SIMULAÇÕES SUCESSIVAS
EMPREGADO POR “SOFTWARES” COMERCIAIS Empregam, para dimensionamento, os módulos ordenados para simulação. Mas exige um procedimento de otimização: função objetivo (a ser minimizada): diferença, em valor absoluto, entre os valores obtidos para as variáveis de saída e os valores estipulados como metas variáveis de projeto: as dimensões dos equipamentos

44 Exemplo: Extrator FO = |x – 0,008| T oC W = 3.750 kgB/h
rafinado y = 0,032kg AB/kg B r = 0,60 extrato Q* = kgA/h xo*= 0,02 kg AB/kg A To oC Ts oC x* = 0,008 kgAB/kg A alimentação solvente Normal Simulações Sucessivas T oC W = ??? kgB/h rafinado y = kg AB/kg B extrato W = kgB/h Q* = kgA/h xo*= 0,02 kg AB/kg A To oC Ts oC x = ??? kgAB/kg A alimentação solvente FO = |x – 0,008|

45 Por Seção Áurea, 0 < W < 1.000  W = 3.750
Exemplo: Extrator T oC W = ??? kgB/h rafinado y = kg AB/kg B extrato W = kgB/h Q* = kgA/h xo*= 0,02 kg AB/kg A To oC Ts oC x = ??? kgAB/kg A alimentação solvente FO = |x – 0,008| Simulações Sucessivas 1. Q(xo – x) – W y = 0 2. y – k x = 0 x = Q xo / (Q + k W ) Por Seção Áurea, 0 < W <  W = 3.750

46 Exemplo: Trocador de Calor
Normal T1* = 80 oC W1* = kg/h A = 265,6 m2 T 2* = 25 oC W3 = kg/h T3* = 15 oC T4* = 30 oC Simulações Sucessivas T1* = 80 oC W1* = kg/h A T 2* ??? W3 T3* = 15 oC T4* = ??? T2 = T1 – Q/W1Cp1 T4 = T3 + Q/W3Cp3 FO = (T2 – 25)2 + (T4 – 30)2 Por Hooke&Jeeves ... 0 < A < < W3 <


Carregar ppt "Otimização Paramétrica (Cap. 5)"

Apresentações semelhantes


Anúncios Google