A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Raciocínio Aproximado

Apresentações semelhantes


Apresentação em tema: "Raciocínio Aproximado"— Transcrição da apresentação:

1 Raciocínio Aproximado
Relações Clássicas Relações Difusas Implicação: se A então B Lógica Clássica Lógica Difusa : regras difusas e operações de composição Princípio de Extensão e Raciocínio Aproximado: se A’ então B’ Ross – cap 7: Classical Logic and Fuzzy Logic Profa. Silvia Modesto Nassar

2 Raciocínio aproximado: regra difusa e operação de composição
Regra difusa: A e B são conjuntos difusos. Regra 1: SE x é A ENTÃO y é B Regra 1: A  B = R=(AxB)U(AxY) Produto Cartesiano Considerando uma nova entrada (antecedente) A’ teremos a saída (conseqüente) B’: B’= A’ R Relação R Operação de Composição Profa. Silvia Modesto Nassar

3 Sistema Difuso: raciocínio aproximado
Entradas “crisp” Fuzzificação Regras Inferência Fuzzy Desfuzzifica-ção Saídas “crisp” Profa. Silvia Modesto Nassar

4 Profa. Silvia Modesto Nassar
Relações Clássicas Produto Cartesiano: Uma seqüência ordenada de n elementos (a1, a2, a3, ... , an) é chamada de n-tupla ordenada. Sejam os conjuntos A1, A2, A3, ... , Ar então o conjunto de todas as r-tuplas, onde a1A1, a2A2 e arAr , é chamado de PRODUTO CARTESIANO A1xA2xA3x ... xAr Quando Ar são iguais a A então o produto cartesiano A1xA2xA3x ... xAr é denotado por Ar Profa. Silvia Modesto Nassar

5 Produto Cartesiano: exemplos
Para os conjuntos A={0, 1} e B={a, b, c} temos os seguintes produtos cartesianos: AxB= {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)} BxA= {(a, 0), (b, 0), (c, 0), (a, 1), (b, 1), (c, 1)} AxA=A2= {(0, 0), (0, 1), (1, 0), (1, 1)} Profa. Silvia Modesto Nassar

6 Produto Cartesiano: relações n-árias
Um subconjunto do Produto Cartesiano A1xA2x ... xAn é chamada de um RELAÇÃO n-ária sobre A1,A2, ... ,An. O PRODUTO CARTESIANO de dois universos X e Y é definido como: X x Y = {(x,y) | xX e yY} xX e yY A força desta RELAÇÃO entre os pares ordenados de elementos é definida pela função característica א a seguir: אXxY (x,y) =1 se (x,y)  XxY (completamente relacionado) 0 se (x,y)  XxY (não relacionado) Profa. Silvia Modesto Nassar

7 Produto Cartesiano: representação
Um subconjunto do Produto Cartesiano A1xA2x ...xAn é chamada de um RELAÇÃO n-ária sobre A1,A2, ... ,An. Diagrama Sagittal Matriz de Relação - Cardinalidade da relação R : nx*ny X Y 1   a 2   b 3   c R = 1 2 3 a b c R Profa. Silvia Modesto Nassar

8 Relações Clássicas: operações
Sejam duas relações R e S no universo cartesiano X x Y: União: RS  RS(x,y) = max [ R(x,y) ,  S(x,y) ] Intersecção: RS  RS(x,y) = min [ R(x,y) ,  S(x,y) ] Complemento: R  R(x,y) = 1 -  R(x,y) Profa. Silvia Modesto Nassar

9 Relações Clássicas: operações
Sejam duas relações R e S no universo cartesiano X x Y: Contido: RS  R(x,y)   S(x,y) Identidade:   O e X  E onde a relação O é a relação nula (matriz nula) e a relação E é a relação universal ou completa (matriz identidade) Profa. Silvia Modesto Nassar

10 Relações Clássicas: composição
X Y Z x y1 x y z1 x y z2 R S A relação T é uma relação de COMPOSIÇÃO na forma T= RS Profa. Silvia Modesto Nassar

11 Relações Clássicas: composição T= RS
y1 y2 y3 z z2 R = x1 x2 x3 y1 y2 y3 T = x1 x2 x3 z z2 COMPOSIÇÃO: max-min Profa. Silvia Modesto Nassar

12 Relações Clássicas: exemplos de composição
Sejam as relações R, S e T= RS: Composição max-min:  T(x,z) = max [min(( R(x,y) ,  S(y,z) )] yY Composição max-produto ou max-dot :  T(x,z) = max [( R(x,y) *  S(y,z) )] Profa. Silvia Modesto Nassar

13 Inferência Dedutiva: exemplo
Sejam os universos de discurso X e Y definidos por X={1,2,3,4} e Y={1,2,3,4,5,6}. Sejam os conjuntos clássicos A={2,3} e B={3,4}. Obtenha a matriz de relação para a regra “Se A então B”, utilizando R= (AxB)  (A x Y)  R(x,y) = max [( A(x)   B(y) ), ((1-  A(x)) 1) ] (cap. 7, pag ROSS) Profa. Silvia Modesto Nassar

14 Relações Difusas: princípio da extensão
Mapeiam os elementos de um universo X para outro universo Y Produto Cartesiano X x Y A força da relação para os pares (x,y) é definida em [0;1] por uma Função de Pertinência. A cardinalidade de uma relação difusa R é infinita Profa. Silvia Modesto Nassar

15 Relação Difusa R: princípio da extensão
Sejam dois conjuntos difusos A em X e B em Y então o produto cartesiano AxB=R  XxY A relação difusa R tem a seguinte função de pertinência  R(x,y) =  AxB(x,y) =min [ A(x) ,  B(y) ] Profa. Silvia Modesto Nassar

16 Raciocínio aproximado: regra difusa e operação de composição
Regra difusa: A e B são conjuntos difusos Regra 1: SE x é A ENTÃO y é B Regra 1: A  B = R=(AxB)U(AxY) Produto Cartesiano Considerando uma nova entrada (antecedente) A’ teremos a saída (conseqüente) B’: B’= A’ R Relação R Operação de Composição Profa. Silvia Modesto Nassar

17 Relações Difusas: operações padrão
União: RS  RS(x,y) = max [ R(x,y) ,  S(x,y) ] Intersecção: RS  RS(x,y) = min [ R(x,y) ,  S(x,y) ] Complemento: R  R(x,y) = 1 -  R(x,y) Contido: RS  R(x,y)  S(x,y) Profa. Silvia Modesto Nassar

18 Relações Difusas: propriedades
ATENDEM: Comutatividade, associatividade, distributividade, involução e idempotência. NÃO ATENDEM: Leis do meio excluído: R  R  E (relação completa, identidade) R R  O (relação nula, nula) Profa. Silvia Modesto Nassar

19 Profa. Silvia Modesto Nassar
Lógica Difusa: Raciocínio aproximado: proposições imprecisas extensão da lógica de predicados valores de verdade [0, 1] Profa. Silvia Modesto Nassar

20 Lógica Clássica: inferência dedutiva (Modus Ponens)
Regra R: Se A então B onde A é definido no universo X e B é definido no universo Y A regra é considerada uma RELAÇÃO entre os conjuntos A e B R= (AxB)  (A x Y) supondo um novo antecedente A’ então temos um novo conseqüente B’ regra: Se A’ então B’ onde B’ = A’ R = A’  ((AxB)  (A x Y))  R(x,y) = max [( A(x)   B(y) ), ((1-  A(x))  1) ] Profa. Silvia Modesto Nassar

21 Lógica Difusa: Raciocínio aproximado
Regra difusa: A e B são conjuntos difusos. Regra 1: SE x é A ENTÃO y é B Regra 1: A  B = R=(AxB)U(AxY) Produto Cartesiano Considerando uma nova entrada (antecedente) A’ teremos a saída (conseqüente) B’: B’= A’ R Relação R Operação de Composição Profa. Silvia Modesto Nassar

22 Formas de Implicação Difusa
Para a relação difusa R com base na regra SE A então B, isto é R = A  B, temos: Mamdani:  R(x,y) = min [  A(x) ,  B(y) ] Lukasiewicz:  R(x,y) = min [1, ( 1-  A(x)+  B(y) ] Soma Limitada:  R(x,y) = min [ 1, ( A(x) +  B(y)) ] Goguen:  R(x,y) = min [1, (  B(y)/  A(x) ] Ross – cap 7: pag 209 Profa. Silvia Modesto Nassar

23 Formas de Composição Difusa
Composição B’ = A’  R temos para todo xX: max-min:  B’(y) = max{min [  A’(x) ,  R(x,y) ] } max-produto:  B’(y) = max {  A’(x)*  R(x,y)} min-max:  B’(y) = min{max [  A’(x) ,  R(x,y) ] } max-max:  B’(y) = max{max [  A’(x) ,  R(x,y) ] } min-min:  B’(y) = min{min [  A’(x) ,  R(x,y) ] } Ross – cap 7: pag 210 Profa. Silvia Modesto Nassar


Carregar ppt "Raciocínio Aproximado"

Apresentações semelhantes


Anúncios Google