A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Computação Gráfica Interativa - Gattass

Apresentações semelhantes


Apresentação em tema: "Computação Gráfica Interativa - Gattass"— Transcrição da apresentação:

1 Computação Gráfica Interativa - Gattass
3/25/2017 Curvas e Superfícies Bezier, Splines, NURBS e Subdivididas Curvas

2 Requisito 1: Independência de eixos
y x' y'

3 Requisito 2: Valores Múltiplos
x y

4 Requisito 3: Controle Local
y x

5 Requisito 4: Pouca Oscilação
polinômio de grau elevado

6 Requisito 4: Continuidade Variável

7 Requisito 5: Versatilidade

8 Requisito 6: Amostragem Uniforme
Dsn Ds3 Ds2 Ds4 Ds1 Dsi  Dsj Requisito 7: Formulação matemática tratável Finalizando:

9 Solução Curva representada por partes através de polinômios de grau baixo (geralmente 3) t=1 continuidade no ponto comum dos trechos t=0 Parametrização t=0 t=1 t=0 t=1 t=0 t=1 u0 u1 u2 un

10 Geometria Diferencial
s ou u P(u) ou P(s)

11 Requisitos da parametrização
P(u) P0 (1-u) u (1-f(u)) f(u) ua ub 1 ua ub

12 Continuidade Geométrica e Paramétrica
Contínua: C1 e G1 Descontínua Contínua: C0 e G0 C0 e G1 Geométrica C1 e G0 Paramétrica

13 Curvas de Bézier z y x P. de Casteljau, 1959 (Citroën)
P. de Bézier, 1962 (Renault) - UNISURF Forest 1970: Polinômios de Bernstein x P(t) y z t=0 t=1 V0 V1 V2 V3 Vn-1 Vn onde: pol. Bernstein coef. binomial

14 Bézier Cúbicas z V1 V3 P(t) V0 V2 y x

15 Polinômios Cúbicos de Bernstein
Computação Gráfica Interativa - Gattass 3/25/2017 Polinômios Cúbicos de Bernstein 1 t B0,3 (1-t)3 3 1 t B1,3 3(1-t)2t 1 t B2,3 3(1-t) t2 -3 1 t B3,3 t3 1 t B0,3 + B1,3 + B2,3 + B3,3 Curvas

16 Propriedades da Bézier Cúbica
x P(t) y z V0 V1 V2 V3 R(1)

17 Controle da Bézier Cúbica

18 Fecho Convexo

19 Demonstração Indução n=1  ok n=2  ok é interior n=3 ...

20 Equação do Foley

21 Redução de n=3 para n=2 Bezier n=2

22 Redução de n=2 para n=1 Bezier n=1

23 Cálculo de um Ponto (1-t) t Mostre que:

24 Subdivisão de Bézier Cúbicas
. . .

25 Construção de uma Bezier
P(1/2)

26 Curve fitting

27 Nova notação

28 Derivadas na nova notação
z y x

29 Construção de uma curva que passa por 2 pontos

30 Construção de uma curva que passa por 3 pontos

31 Método contrutivo: dados n pontos acrescentar mais um

32 Interpolação: dados p0…pn ache l’s e r’s

33 Bezier interpolation Criteria: Given: np points Find: 2(np-1) points 

34 Bezier interpolation Criteria: resulting linear system:
solve for l and r

35 Bezier surface (from cross section curves)
conventions and notations N S E W y x z i=0,…,np-1 j=0,…,nc-1 x z pij is the point i of curve j

36 Bezier surface (from cross section curves)
W x z i=0,…,np-1 j=0,…,nc-1 i=0,…,np-1 i=0,…,np-2 i=1,…,np-1

37 Bezier surface rendering
7x4 7x7 4(4x4) 4x4

38 B-Splines + • p = grau do polinômio Ni,p(u)
controla a continuidade ( Cp-1 ) • vértices + nós U={u0, u1, ..., um} ui = nós (knots) ui,ui+1 = trechos (spans) m=n+p+1 u0 u2 ui ui+1 um ... u Ni,0(u) u1 u0  u1  u2  …  um

39 Propriedades de Ni,p(u)
Não negativa: Ni,p(u)0 para qualquer u, i, e p. Partição da unidade:  Ni,p(u)=1 para todo uu0,um. Suporte local: Ni,p(u)=0 se uui, ui+p+1. Mais ainda, in qualquer intervalo dos nós no máximo p+1 das Ni,p(u) são não zero. Diferenciabilidade: todas as derivadas de Ni,p(u) existem no interior de um intervalo de nós (onde é polinômial) . Nos nós Ni,p(u) é p-k diferenciável, onde k é a multiplicidade do nó. Extremo: exceto para o caso p=0, Ni,p(u) tem apenas um ponto de máximo.

40 Spline Uniforme uj+1- uj =d

41 Splines Uniformes p=0 e p=1
Ni,0(u) ... ui-d ui ui+d ... n p=1 Ni,2(u) ui-d ui ui+d ui+2d

42 Splines Uniformes p=2 Ni-1,1(u) Ni,1(u) Ni+1,1(u) ui-d ui ui+d ui+2d

43 Polinômios da B-Spline Uniforme

44 Segmentos da B-spline cúbica
p(t) (3t3-6t2+4)/6 (-3t3+3t2+3t+1)/6 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 (1-t)3/6 t3/6 t 0,0 0,2 0,4 0,6 0,8 1,0

45 Funções da base u t t t For i = 0, ..., n For t = 0, ..., 1 N-1,3(u)
Nn-1,3(u) Nn,3(u) Nn+1,3(u) 0,1 0,2 0,3 0,4 0,5 0,6 0,7 u u0 u1 u2 i=0 u3 ... um-4 um-3 um-2 um-1 um t i=1 i=n t t For i = 0, ..., n For t = 0, ..., 1

46 B-Spline Periódica - Foley -
Para cada par Vi, Vi+1 , i=0,...,n Para cada t=0,...,1 Vn+1= V0 Vn+2 =V1 V2 V3 V4 V-1= Vn Periódica: i=0, ... , n V-1 = Vn Vn+1 = V0 Vn+2 = V1

47 B-Spline Não Periódica - Foley -
• vértices + nós i=3 + + i=n-1 + i=1 i=2 + + i=0 i=0 P(0) = (V-1+ 4V0+ V1)/6 P’’(0) = V-1 -2V0+ V1 = 0  V-1 = 2V0 - V1 i=0; P(0) = V0 + i=n-1 P(1) = (Vn-1+ 4Vn+ Vn+1)/6 P’’(1) = Vn-1-2Vn+ Vn+1  Vn+1 = 2Vn - Vn-1 i=n-1; P(1) = Vn

48 Base Periódica V2 V3 V9= V1 V4 V8= V0 V-3=V5 V-1= V7 V-2= V6 i=4 i=3

49 Base Não Periódica

50 Bézier e B-Spline

51 B-Spline Periódica - Interpolação -
Vn+1= V0 Vn+1 =V1 V2 V3 V4 V-1= Vn P0(0) Considere os nós como os pontos dados P1(0) Pn(0) Para i=0,..., n Pi(0) = (Vi-1+ 4Vi+ Vi+1)/6; P2(0) P3(0) P4(0) • vértices + nós

52 B-Spline Não Periódica - Foley -
• vértices + nós i=3 + + Considere os nós como os pontos dados i=n-1 + i=1 i=2 + + i=0 P0 = V0 ; Pn = Vn ; Para i=1,..., n-1 Pi(0) = (Vi-1+ 4Vi+ Vi+1)/6; +

53 Funções Racionais Da trigonometria: 0.2 0.4 0.6 0.8 1.0

54 Cônicas y x Qualquer cônica pode ser representada parametricamente
cônica qualquer escrita num sistema de eixos cuja origem é um ponto da cônica x Qualquer cônica pode ser representada parametricamente como uma fração de polinômios quadráticos

55 NURBS Non Uniform Rational B-Splines
yh xh w w=1 x y

56 Cônicas como NURBS w1=s/(1-s) Faux et al.
0.2 -0.2 1 3 s Elipse (w1<1) Parábola (w1=1) Hipérbola (w1>1) Faux et al. w0w2 /w1 - determina a cônica

57 Círculo através de NURBS
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 n=8 p=2 m=12 (x0 , y0) (x1 , y1) (x2 , y2) (x3 , y3) (x4 , y4) (x5 , y5) (x6 , y6) (x7, y7) (x8 , y8)


Carregar ppt "Computação Gráfica Interativa - Gattass"

Apresentações semelhantes


Anúncios Google