Carregar apresentação
A apresentação está carregando. Por favor, espere
1
Estatística Aplicada (Aula 4)
2
Inferência Estatística
Ramo da Estatística que estuda como fazer afirmações sobre características de uma população baseando-se em resultados de uma amostra. Exemplos do dia a dia do uso de informações da amostra para concluir sobre o todo: Como a cozinheira verifica a quantidade de sal na comida ou como a dona de casa decide sobre a compra de uma fruta na feira após provar um pedaço. Pode ser razoável supor que a distribuição das alturas dos brasileiros adultos possa ser representada por um modelo normal, mas como descobrir seus parâmetros (média e variância)? Medir a altura de todos os brasileiros, assim como determinada caracteristica de qualquer população é quase sempre inviável por apresentar: Alto custo, tempo muito grande ou até pois consiste num processo destrutivo (durabilidade de lampadas por exemplo).
3
Inferência Estatística
Solução: selecionar parte dos elementos da população (amostra), analisá-la e inferir propriedade para o todo. Exemplos: População e amostra 1- Pesquisar os salários dos 5000 funcionários de uma empresa através de uma amostra de 300 funcionários escolhidos cuidadosamente. 2- Estudar a proporção de indivíduos favoráveis a execução de um projeto na cidade X. Sorteia-se 200 moradores aleatoriamente para fazer a questão. 3- Investigar o tempo de duração de um novo modelo de lâmpadas através do teste de 100 unidades. Investigar se uma moeda é ‘honesta’ jogando-se 50 vezes e anotando a proporção de caras e coroas
4
Inferência Estatística
5
Distribuição amostral da média - Teorema do Limite Central
6
Distribuição amostral da média - Teorema do Limite Central
8
Conforme n vai aumentando o histograma vai se aproximando de uma curva normal.
Mesmo a população não apresentando distribuição normal de algum parâmetro, as médias amostrais se distribuirão normalmente para um n tendendo ao infinito. Para populações com distribuição normal, qualquer n já garante uma distribuição normal das médias amostrais. Considera-se que para qualquer distribuição populacional, um n>=30 já apresenta uma boa aproximação a uma curva normal.
9
Erro Amostral Deseja-se estimar a média populacional, μ de uma determinada variável, pela média amostral, X. Qual a magnitude do erro que cometemos nesta estimação?
10
Exemplo O gerente de operações de um grande banco, desejando determinar o tempo médio que os clientes gastam no auto atendimento, realizou a medição do tempo gasto por um grande número de clientes e obteve uma população normalmente distribuída com média de 3,68 minutos e desvio padrão de 0,15 minutos. Se uma amostra de 25 clientes for escolhida ao acaso entre milhares dos que utilizam os auto atendimentos por dia, que resultado podemos esperar para o tempo médio dessa amostra? 3,70 min? 2,00 min? 3,68 min?
11
Exemplo Qual a probabilidade de uma observação X entre 3,65 e 3,68 min? Qual a probabilidade de se obter uma média amostral X entre 3,65 e 3,68?
12
Distribuição de médias amostrais
13
Simulação de populações normais
14
Exemplo (cont.) Qual a probabilidade de se obter uma média amostral X entre 3,65 e 3,68 min? Logo, 34,13% de todas as amostras possíveis de tamanho igual a 25 teriam uma média amostral entre 3,65 e 3,68 minutos
15
Exemplo Como esses resultados seriam alterados se a amostra contivesse 100 clientes, ao invés de 25?
16
Intervalo de confiança
Ao invés de determinar a proporção de médias amostrais que espera-se que caiam dentro de um certo intervalo, o gerente de operações está interessado em encontrar um intervalo simétrico em torno da média populacional que incluísse 95% das médias amostrais. Deseja-se determinar uma distância acima e abaixo da média μ que contenha uma área especificada da curva normal
17
Intervalo de confiança
18
E se não conhecemos μ? Se, para cada amostra de tamanho n, construirmos um intervalo de confiança como mostrado acima, 95% dos intervalos conterão a média populacional.
19
Intervalo de confiança
Média populacional desconhecida A satisfação dos clientes de uma instituição financeira pode ser avaliada através de um score, que segue uma distribuição aproximadamente normal, com média desconhecida. Sabe-se, de estudos anteriores, que o desvio padrão desse score é 10. Sorteada uma amostra de 50 clientes, obteve-se um score médio (amostral) de 70. Qual o intervalo de 95% de confiança para o score médio populacional?
20
Intervalo de confiança
21
Margem de Erro A margem de erro será tão menor, quanto maior for o tamanho da amostra (n) e o desvio padrão populacional
23
Colocar mais exemplos
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.