A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

8.EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Parte 3

Apresentações semelhantes


Apresentação em tema: "8.EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Parte 3"— Transcrição da apresentação:

1 8.EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Parte 3
8.1 – INTRODUÇÃO – PVI’s 8.2 – MÉTODOS DE PASSO SIMPLES 8.2.1 – MÉTODO DE EULER 8.2.2 – MÉTODOS DE TAYLOR 8.2.3 – MÉTODOS DE RUNGE-KUTTA 8.3 – MÉTODOS DE PASSO MÚLTIPLO 8.4 – MÉTODOS PREVISOR-CORRETOR 8.5 – EDO’s DE ORDEM SUPERIOR E SISTEMAS DE EDO’s PVC’s E O MÉTODO DAS DIFERENÇAS FINITAS hoje

2 8. EDO’s 8.2.3 – Métodos de Runge-Kutta
Vimos os métodos de Euler, Euler Inverso e Euler Aprimorado para resolver problemas de valores iniciais (PVI’s) Estes métodos são classes de méto-dos de Runge-Kutta como veremos.

3 8. EDO’s 8.2.3 – Métodos de Runge-Kutta
Carl David Runge ( ) - Físico alemão – Trabalho de 1895 sob soluções numéricas de EDO’s. M. Wilhelm Kutta ( ) – Matemático alemão – Aprimorou o método em 1901 ao estudar aerodinâmica se aerofólios.

4 8. EDO’s 8.2.3 – Métodos de Runge-Kutta
A idéia dos métodos que estudaremos é aproveitar as qualidades dos méto-dos das séries de Taylor eliminando o seu maior defeito que é o cálculo de derivadas de f(x,y). Os métodos de Runge-Kutta de ordem p caracterizam-se pelas propriedades: 1- São métodos de passo um; 2- Não calculam derivadas; 3- Em mesma ordem, as fórmulas de Taylor e Runge-Kutta são semelhantes.

5 8. EDO’s 8.2.3 – Runge-Kutta de 1ª ordem
O método de Runge-Kutta de 1ª ordem é o método de Euler ou de Taylor de 1ª ordem: onde Note que (1) satisfaz as três porpriedades dos métodos de Runge-Kutta.

6 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Os métodos de Runge-Kutta de 2ª or-dem devem ter fórmulas que devem ser semelhantes às fórmulas do Méto-do de Taylor até termos de segunda ordem em h. Consideremos o método de Euler aprimorado ou fórmula de Heun

7 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Reescrevendo a fórmula de Heun 1- Observando que para calcular usamos apenas , então dize- mos que o Método de Euler Aprimorado é de Passo Um ou de Passo Simples. 2- O Método de Euler Aprimorado não tem derivadas de f(x,y). 3- Resta verificar a terceira condição.

8 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Resta verificar se a fórmula de Heun é semelhantes às fórmulas do Método de Taylor até termos de segunda ordem em h. Da fórmula de Taylor de y(x) em x=xn+1

9 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Calculemos a fórmula de Taylor de 2ª ordem.

10 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
No Método de Euler Aprimorado trabalhamos Com

11 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Segue que: e o Método de Euler Aprimorado escreve-se

12 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Enfim Logo, o Método de Euler Aprimorado é um método de Taylor de 2ª ordem e portanto, devido às 3 propriedades verificadas, também é um Método de Runge-Kutta de 2ª ordem.

13 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
A Fórmula geral de Runge-Kutta de 2ª ordem tem a forma: No caso do Euler Aprimorado

14 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Questão: A expressão (3) sempre é seme-lhante a fórmula de Taylor com termos até segunda ordem em h? Realizando um procedimento semelhante àquele realizado para o Método de Euler Aprimorado, verificamos que os parâmetos devem ser tais que

15 8. EDO’s 8.2.3 – Runge-Kutta de 2ª ordem
Como temos um parâmetro arbitrário, tomamos, por exemplo, de modo que a fórmula de Runge-Kutta de 2ª ordem escreve-se como:

16 8. EDO’s 8.2.3 – Runge-Kutta de 3ª ordem
De forma análoga podemos construir a fórmula de métodos de Runge-Kutta de 3ª ordem. Sejam PVI’s do tipo então uma fórmula de Runge-Kutta de 3ª ordem escreve-se como:

17 8. EDO’s 8.2.3 – Runge-Kutta de 4ª ordem
De forma análoga podemos construir a fórmula de métodos de Runge-Kutta de 4ª ordem. Sejam PVI’s do tipo então uma fórmula de Runge-Kutta de 4ª ordem escreve-se como:

18 8. EDO’s 8.2.3 – Comentários sobre Runge-Kutta
FÓRMULAS DE RUNGE-KUTTA 1ª ordem: 2ª ordem: particular 3ª ordem:

19 8. EDO’s 8.2.3 – Comentários sobre Runge-Kutta
FÓRMULAS DE RUNGE-KUTTA 4ª ordem: Com1: As fórmulas de Runge-Kutta são médias ponderadas de valores de f(x,y) em pontos no intervalo

20 8. EDO’s 8.2.3 – Comentários sobre Runge-Kutta
FÓRMULAS DE RUNGE-KUTTA Com2: As somas ; podem ser interpretadas como um coeficiente angular médio. Com3: Problema do passo fixo pode ser resolvido com o desenvolvimento de Métodos de Runge-Kutta adaptativos, os quais ajustam o passo de modo a manter o erro de trun- camento local num nível de tolerância fixado.

21 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
Exemplo 1: Para o PVI dado, estime PVI: Runge-Kutta de primeira ordem. Assim

22 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
Definindo a partição do intervalo (0,1)

23 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
b) Runge-Kutta de 2ª ordem. Euler aprimorado. Analogamente ao Runge-Kutta de 1ª ordem

24 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
Definindo a partição do intervalo (0,1)

25 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
c) Runge-Kutta de 3ª ordem.

26 8. EDO’s 8.2.3 – Exemplos de Runge-Kutta
c) Runge-Kutta de 3ª ordem.

27 8.2.3. Métodos de Runge-Kutta Exercícios
Exercício: Utilize o Método de Runge-Kutta de 1ª, 2ª, 3ª e 4ª ordens, para calcular valores aproximados da solução y(x) do problema de valor inicial no intervalo [0,2]. Utilize partições h=0.5 , h=0.25 e h=0.1


Carregar ppt "8.EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Parte 3"

Apresentações semelhantes


Anúncios Google