Carregar apresentação
A apresentação está carregando. Por favor, espere
PublicouMaria das Neves Taveira Azevedo Alterado mais de 9 anos atrás
1
ME623A Planejamento e Pesquisa
2
Comparações Múltiplas
Na Análise de Variância, realizamos o teste F para verificar a igualdade de todas as médias dos tratamentos Suponha que H0 é rejeitada, ou seja, existe diferença entre as médias. Mas a partir desse teste não sabemos dizer exatamente quais médias diferem Para isso, utilizamos os chamados Métodos de Comparações Múltiplas Estes fazem comparações entre pares médias de tratamentos ou combinações lineares das médias
3
Comparações de Pares de Médias
Suponha que queremos testar todas as possíveis combinações de pares de médias: E por que não devemos usar testes t individuais de nível para fazer tais comparações? Existem procedimentos para fazer tais comparações controlando o nível de significância geral, que discutiremos nessa aula
4
Teste de Tukey Tukey (1953) propôs um procedimento para comparar todos os a(a – 1)/2 possíveis pares de médias Nível de significância geral: exatamente α (balanceado) no máximo α (não balanceado) Quando pode ser aplicado, esse procedimento produz intervalos de confiança mais estreitos que qualquer outro teste de comparação das médias
5
Teste de Tukey Baseado na distribuição da amplitude studentizada
onde e são a maior e menor média dos tratamentos, respectivamente Regra de decisão: duas médias μi e μj são significati- vamente diferentes se sendo Tabela VIII do Apêndice do livro contém os valores de
6
Teste de Tukey (Exemplo da fibra sintética)
Temos a = 5 tratamentos. Para α=0.05, temos Então, a diferença é significativa se excede 5.37
7
Teste de Tukey (Exemplo da fibra sintética)
No R > tTukey <- TukeyHSD(aov(Obs ~ factor(Algodao), data=dados)) diff lwr upr p adj
8
Teste de Tukey (Exemplo da fibra sintética)
No R > plot(tTukey, sub="Tukey’s Test", las=1)
9
Least Significance Difference (LSD) de Fisher
Se o teste F da ANOVA é significante a um nível α, cada par de média é então testado por um teste t de nível α Desvantagem: controla apenas o nível α de cada teste, mas não controla o nível de significância geral Regra de decisão: duas médias μi e μj são significativa- mente diferentes se sendo
10
Teste LSD (Exemplo da fibra sintética)
Com a = 5 tratamentos e α=0.05, temos Então, a diferença é significativa se excede 3.75 Representação gráfica dos resultados
11
Teste de Dunnett Comparando Médias a um Controle
Suponha que o tratamento a é o controle e então iremos testar Para cada hipótese, calculamos a diferença: Rejeitamos H0 se em que é dado pela Tabela IX α é o nível de significância conjunto dos a – 1 testes
12
Teste de Dunnett (Exemplo Ansiedade)
Nesse exemplo temos a=3 tratamentos, sendo um placebo (0mg) e duas dosagens (50mg e 100mg) Lembrem-se que: Calculamos e Ambas dosagens diferem significativamente do placebo
13
Contrastes Muitos métodos de comparações múltiplas usam a idéia de contrastes No exemplo da fibra sintética, a engenheira suspeita que a resistência aumenta com a % de algodão. Então podemos, por exemplo, comparar os níveis extremos: ou de forma equivalente,
14
Contrastes Contraste é uma combinação linear de parâmetros:
onde a soma das constantes é 0, ou seja, As hipóteses a serem testadas são expressas em termos dos contrastes: ou
15
Contrastes No exemplo da fibra sintética para testar se
as constantes do contraste são Testar hipóteses envolvendo contrastes pode ser feito de duas maneiras: Teste t Teste F
16
Contrastes Suponha que o contraste de interesse seja
Substituindo a média populacional dos tratamentos pelas médias amostrais, temos A média e variância de C são:
17
Testando Contrastes – Test t
Hipóteses: Se H0 é verdadeira e usando MSE para estimar σ2 Calcula-se o p-valor = Rejeita-se H0 se p-valor < α ou, de forma equivalente, se
18
Intervalo de Confiança para o Contraste
Assim como construímos IC para a diferença entre duas médias, temos também IC para o contraste Um IC de nível 100(1 – α)% para o contraste Γ é Relação com o teste de hipótese: Se o IC contém zero, então não temos evidência para rejeitar H0
19
Testando Contrastes – Test F
Hipóteses: Tomando-se o quadrado da estatística t0 anterior, temos a estatística F0 Calcula-se o p-valor = Rejeita-se H0 se p-valor < α ou, de forma equivalente, se
20
Testando Contrastes – Test F
Defina a Soma de Quadrados do Contraste (SSC): com um grau de liberdade Então, podemos reescrever a estatística F0 como
21
Contrastes no Caso Não Balanceado
Quando o número de replicações é diferente para cada tratamento, pequenas modificações são feitas nos resultados anteriores A definição de contraste para esse caso requer que Por exemplo, a estatística t0 e a SSC tornam-se:
22
Contrastes Ortogonais
Dois contrastes com coeficientes {ci} e {di} são ortogonais se Quando temos a tratamentos, sempre existe um conjunto de a – 1 contrastes ortogonais que particiona SSA em componentes com 1 gl Então, testes em contrastes ortogonais são independentes Existem várias formas para escolher os coeficientes destes contrastes. A natureza do experimento sugere quais comparações devem ser de interesse
23
Testando Contrastes (Exemplo Ansiedade)
Voltando ao exemplo da ansiedade Veja que os contrastes com ci = −2, 1, 1 e di = 0, −1, 1 são ortogonais Contraste 1 com coeficientes ci = −2, 1, 1 Contraste 2 com coeficientes di = 0, −1, 1 Tratamento Dosagem (mg) Coeficientes para Contrastes Ortogonais 0 (placebo) −2 50 (nível 1) 1 −1 100 (nível 2)
24
Testando Contrastes (Exemplo Ansiedade)
Vamos calcular as SSC Faça o teste F para cada contraste Escreva os resultados na tabela ANOVA
25
Testando Contrastes (Exemplo Ansiedade)
Calculando o valor dos contrastes e suas SS: Na Tabela ANOVA Contrastes C1 e C2 são significativos
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.