A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

SLIDE 03 -02 SLIDE 03 -03 A base {(1,0), (0,1)} é ortonormal, ela que determina o conhecido sistema cartesiano ortogonal xOy. BASE CANÔNICA SLIDE 03-04.

Apresentações semelhantes


Apresentação em tema: "SLIDE 03 -02 SLIDE 03 -03 A base {(1,0), (0,1)} é ortonormal, ela que determina o conhecido sistema cartesiano ortogonal xOy. BASE CANÔNICA SLIDE 03-04."— Transcrição da apresentação:

1

2 SLIDE 03 -02

3 SLIDE 03 -03

4 A base {(1,0), (0,1)} é ortonormal, ela que determina o conhecido sistema cartesiano ortogonal xOy. BASE CANÔNICA SLIDE 03-04

5 SLIDE 03 -05 Expressão analítica de v.

6 Exercícios Qual a expressão analítica dos vetores abaixo? SLIDE 03 - 06

7 SLIDE 03-07

8 SLIDE 03-08 Conclusão: Um vetor tem infinitos representantes, mas o que melhor lhe caracteriza é aquele que tem origem em (0, 0) e extremidade em. O vetor é chamado de vetor posição ou representante natural ou. Aurélio Fred AVGA

9 SLIDE 03-09 Exemplo: Aurélio Fred AVGA

10 SLIDE 03- 10 Exemplo: Aurélio Fred AVGA

11 Aurélio Fred AVGA VETORES NO ESPAÇO SLIDE 03- 11

12 Aurélio Fred AVGA VETORES NO ESPAÇO SLIDE 03-12

13 VETORES NO ESPAÇO SLIDE 03-13 Aurélio Fred AVGA

14 VETORES NO ESPAÇO SLIDE 03-14 Aurélio Fred AVGA

15 VETORES NO ESPAÇO SLIDE 03-15 Aurélio Fred AVGA

16 SLIDE 03.16 Exemplos: Aurélio Fred AVGA 12

17 SLIDE 03.17 Exemplos: Aurélio Fred AVGA 1 2

18 SLIDE 03.18 Exemplos: Aurélio Fred AVGA 1


Carregar ppt "SLIDE 03 -02 SLIDE 03 -03 A base {(1,0), (0,1)} é ortonormal, ela que determina o conhecido sistema cartesiano ortogonal xOy. BASE CANÔNICA SLIDE 03-04."

Apresentações semelhantes


Anúncios Google