A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

MEDIDAS DE DESEMPENHO Classificação SUPERVISIONADA.

Apresentações semelhantes


Apresentação em tema: "MEDIDAS DE DESEMPENHO Classificação SUPERVISIONADA."— Transcrição da apresentação:

1 MEDIDAS DE DESEMPENHO Classificação SUPERVISIONADA

2 Matriz de Confusão A matriz de confusão de uma hipótese h oferece uma medida efetiva do modelo de classificação, ao mostrar o número de classificações corretas versus as classificações preditas para cada classe, sobre um conjunto de exemplos T O número de acertos, para cada classe, se localiza na diagonal principal M(C i,C i ) da matriz Os demais elementos M(C i,C j ), para i ≠ j, representam erros na classificação A matriz de confusão de um classificador ideal possui todos esses elementos iguais a zero uma vez que ele não comete erros

3

4 Medidas de Desemepenho Acurácia: porcentagem de amostras positivas e negativas classificadas corretamente sobre a soma de amostras positivas e negativas

5 Estimação da taxa de erro (ou de acerto = Acuracia) Holdout - 2/3 treinamento, 1/3 teste Validação cruzada (k-fold) K conjuntos exclusivos e exaustivos O algoritmo é executado k vezes Bootstrap Com reposição de amostras

6 Desbalanceamento de Classes Suponha um conjunto de amostras com a seguinte distribuição de classes dist(C1, C2, C3) = (99.00%, 0.25%, 0.75%) Um classificador simples que classifique sempre novos exemplos como pertencentes à classe majoritária C1 teria uma precisão de 99,00% Isto pode ser indesejável quando as classes minoritárias são aquelas que possuem informação importante. Por exemplo: C1: paciente normal, C2: paciente com doença A C3: paciente com doença B

7 Desbalanceamento de Classes Exemplo : C1 = pacientes com câncer (4 pacientes) C2 = pacientes saudáveis (500 pacientes) acc(M) = 90% Classificou corretamente 454 pacientes que não tem câncer Não acertou nenhum dos que tem câncer Pode ser considerado um “bom classificador”?

8 Desbalanceamento de Classes Quando se trabalha com classes desbalanceadas é desejável utilizar uma medida de desempenho diferente da precisão A maioria dos sistemas de aprendizado é projetada para otimizar a precisão. Estes classificadores apresentam um desempenho ruim se o conjunto de treinamento encontra- se fortemente desbalanceado, Algumas técnicas foram desenvolvidas para lidar com esse problema, tais como a introdução de custos de classificação incorreta, a remoção de amostras redundantes ou prejudiciais ou ainda a detecção de exemplos de borda e com ruído

9 Medidas de Desemepenho Sensitividade (Recall): porcentagem de amostras positivas classificadas corretamente sobre o total de amostras positivas Precisão: porcentagem de amostras positivas classificadas corretamente sobre o total de amostras classificadas como positivas Especificidade: porcentagem de amostras negativas identificadas corretamente sobre o total de amostras negativas

10 Medidas de Desempenho F-measure também chamada F-score. É uma média ponderada de precisão e recall

11 Curva ROC ROC = Receiver Operating Characteristic Curve Enfoque gráfico que mostra um trade-off entre as taxas de TP (TPR) e FP (FPR) de um classificador. TPR = TP/(TP + FN) ( = recall) = Porcentagem de amostras corretamente classificadas como positivas dentre todas as positivas reais FPR = FP/(TN + FP) Porcentagem de amostras erroneamente classificadas como positivas dentre todas as negativas reais Ideal : TPR = 1 e FPR = 0

12 Exemplo Test Result Pts with disease Pts without the disease

13 Test Result Call these patients “negative”Call these patients “positive” Limiar

14 Test Result Call these patients “negative”Call these patients “positive” without the diseasewith the disease True Positives

15 Test Result Call these patients “negative”Call these patients “positive” False Positives

16 Test Result Call these patients “negative”Call these patients “positive ” True negatives

17 Test Result Call these patients “negative”Call these patients “positive” False negatives

18 Test Result ‘‘-’’ ‘‘+’’ Movendo o Limiar para a direita

19 Test Result ‘‘-’’ ‘‘+’’ Movendo o Limiar para a esquerda

20 Curva ROC True Positive Rate (sensitivity) 0%0% 100% False Positive Rate (1-specificity) 0%0% 100 %

21 Curva ROC Cada ponto na curva corresponde a um dos modelos induzidos pelo classificador Um bom modelo deve estar localizado próximo do ponto (0,1) Modelos localizados na diagonal são modelos aleatórios TPR = FPR Modelos localizados acima da diagonal são melhores do que modelos abaixo da diagonal.

22 True Positive Rate 0%0% 100% False Positive Rate 0%0% 100% True Positive Rate 0%0% 100% False Positive Rate 0%0% 100% A good test: A poor test: Comparação curvas ROC

23 Comparando performance relativas de diferentes classificadores Curvas Roc são utilizadas para se medir a performance relativa de diferentes classificadores. M1 M2 x Até aqui M2 é melhor do que M1 A partir daí, M1 fica melhor do que M2

24 Análise da curva ROC Ponto (0,1) é o classificador perfeito: classifica todas as amostras positivas e negativas corretamente. FPR=0 e TPR=1. O ponto (0,0) representa um classificador que classifica todas as amostras como negativas, enquanto o ponto (1,1) corresponde a um classificador que classifica todas as amostras como positivas. O ponto (1,0) é o classificador que classifica incorretamente todas as amostras. Em muitos casos, os classificadores possuem um parâmetro que pode ser ajustado para aumentar TP aumentando também FP. Cada parâmetro fornece um par (FP, TP). Um classificador não-paramétrico é representado por um único ponto na curva ROC.

25 Best Test: Worst test: True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % The distributions don’t overlap at all The distributions overlap completely Extremos da curva ROC

26 Area abaixo da curva ROC (AUC) A área abaixo da curva ROC fornece medida para comparar performances de classificadores. Quanto maior a área AUC melhor a performance global do classificador. Classificador optimal: área =1 Classificador randômico : área = 0.5

27 True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % AUC = 50% AUC = 90% AUC = 65% AUC = 100% True Positive Rate 0%0% 100% False Positive Rate 0%0% 100 % AUC para diferentes curvas ROC

28 Referências P-N Tan et al. Introduction to Data Mining – Capitulo 5, seção 5.7 Jesse Davis, Mark Goadrich - The Relationship between Precision-Recall and ROC Curves. Proc. 23rd Int. Conf. On Machine Learning Gary M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations, Vol. 6, Issue 1, Software: AUCCalculator 0.2 A Java program for finding AUC-ROC and AUC-PR


Carregar ppt "MEDIDAS DE DESEMPENHO Classificação SUPERVISIONADA."

Apresentações semelhantes


Anúncios Google