A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Programação em lógica e lógica Jacques Robin, DI-UFPE www.di.ufpe.br/~jr.

Apresentações semelhantes


Apresentação em tema: "Programação em lógica e lógica Jacques Robin, DI-UFPE www.di.ufpe.br/~jr."— Transcrição da apresentação:

1 Programação em lógica e lógica Jacques Robin, DI-UFPE

2 O que é Prolog? * Primeira e mais divulgada linguagem do paradigma da Programação em Lógica (PL) * Operacionalização simples, prática e eficiente da metáfora da PL * PL unifica: Engenharia de Software (especificação formal, linguagens de programação) Inteligência Artificial (IA) (raciocínio com Formalismos de Representação do Conhecimento (FRCs)) Banco de Dados -- Dedutivos (BDDs) Teoria Lógica (TL) das provas

3 Metáfora da programação em lógica * Teoria Lógica = Programa = BD dedutivo = Base de Conhecimento (BC) * Programar = apenas declarar axiomas e regras * Axiomas da TL: fatos da BC parte extensional do BDD dados explícitos de um BD tradicional * Regras da TL (e da BC): parte intencional do BDD * Teoremas da TL: deduzidos a partir dos axiomas e das regras dados implícitos do BDD

4 Linguagens de PL * Interpretadas (interatividade) e compiladas (eficiência) * Interpretadores-Compiladores (IC) de PL: SGBD dedutivos (em geral em memória central) Motores de inferência Provadores de teoremas para lógicas com grande interseção com a Lógica da 1a ordem (L1) * Interação: Declarar o que é verdadeiro (axiomas e regras do PL/BDD) Chamar o IC e carregar o PL/BDD Perguntar o que é verdadeiro (tentar provar teoremas = executar o PL = consultar o BDD)

5 PL x resto do mundo * PL x programação imperativa, funcional e 00: mais declarativa, mais alto-nível mais versátil -- linguagem única para: t especificar formalmente e implementar t programar aplicações, scripts e consultas em BD * PL x outros FRCs: melhor fundamentação teórica melhor integração com o resto da ciência computação * PL = base interessante para integração de paradigmas * PL = caso particular de programação por restrições

6 Ciclo de desenvolvimento de um software baseado em conhecimento AQUISIÇÃO FORMALIZAÇÃO IMPLEMENTAÇÃO MANUTENÇÃO Nível de Conhecimento Nível Lógico Ontologia Raciocínio Nível de Implementação BASE

7 Raciocínio automático em software baseado em conhecimento * Propriedades desejáveis: correto: completo: composicional:

8 Programação procedimental x programação declarativa * 1. Escolher linguagem de especificação formal (LE) * 2. Especificar formalmente os requisitos na LE * 3. Escolher linguagem de programação (LP) * 4. Codificar estruturas de dados na LP * 5. Codificar passo a passo estruturas de controle na LP * 6. Escolher/escrever compilador da LP * 7. Executar programa * Escolher FRC (1,3) * Declarar estruturas de conhecimento no FRC (2,4) * Escolher/escrever motor de inferência para FRC (6) * Consultar base de conhecimento sobre verdade de um fato (7) foi declarado? pode ser deduzido? reposta: booleana (L0, L1) instanciação de variáveis (L1)

9 L1 como FRC e linguagem de programação declarativa: motivação * Satisfaz em grande parte para muitas aplicações: Adequação representacional e inferencial Eficiência aquisicional e inferencial * Propriedades formais (semântica, complexidade da inferência) muito bem conhecidas * Referência e interlingüa para comparar FRCs * Regras de inferências permite RC modular: Independência entre regras Conclusão desamarrável das premissas: uma vez deduzida, a justificação de uma conclusão pode ser esquecida

10 Revisão de L1: sintaxe Fórmula Fórmula-Atômica | (Fórmula) | Fórmula |Quantificador Variável,... Fórmula, | Fórmula Conectivo Fórmula Fórmula-Atômica Predicado(Termo,...) | Termo = Termo Termo Função(termo,...) | Constante | Variável Conectivo | | | Quantificador | | ! Constante Wumpus | Agente | Flecha |... Variável x | y | wumpus | agente |... Predicado Adjacente | Vivo |... Função Em | Brisa |...

11 Revisão de L1: semântica * Engajamento ontológico: universo é dividido em: t objetos, as entidades individuais do universo, representado pelos termos t propriedades, que distinguem um objeto dos outros, representados pelas funções t relações entre objetos, representados pelos predicados * Engajamento epistemológico: afirmações representadas pelas formulas são: t verdadeiras xorfalsas quantificadores e variáveis permitem representar intencionalmente, propriedades de conjuntos de objetos Igualdade semântica permite representar identidade entre objetos

12 Revisão de L1: mecanismo de inferência completo (para verificação) Fórmula da lógica de 1a. ordem Fórmula na forma normal Fórmula instanciada ou False Conversão para forma normal Prova por Refutação ResoluçãoUnificação Demodulação

13 Revisão de L1: forma normal (1) * Def: * Thm: * Regras de conversão: implicação: negação: variáveis:

14 Revisão de L1: formal normal (2) * Regras de conversão (cont.): quantificadores: skolemização: distributividade: associatividade: disjunções: * Quantificação universal implícita

15 Revisão de L1: refutação, unificação e substituição Motivação de provas por refutação: KB P (KB P) ( KB P) (KB P) False Substituição de variáveis de uma formula f: conjunto de pares Var/const ou Var1/Var2 Unificação de 2 formulas f e g: substituição S das variáveis de f e g tal que S(f)=S(g) 2 resultados: t S t r=S(f)=s(g)

16 Revisão de L1: unificação posicional * Exemplos: unif(conhece(joao,X),conhece(Y,leandro)) = {X/Leandro,Y/joao} unif(conhece(joao,X),conhece(X,leandro) = fail unif(conhece(joao,X),conhece(Y,mae(Y)) = {Y/joao, X/mae(joao)} unif(conhece(joão,X),conhece(Y,Z)) = {Y/João, X/Z}, ou {Y/joão, X/Z, W/zelda} ou {Y/joão, X/joão, Z/joão}... * Unificador mais geral: com menor número de variáveis instanciadas * Substituição mínima: com menor número de pares Var/const

17 Revisão de L1: regra de resolução * simples: * ex.: * geral:

18 Revisão de L1: demodulação * Unificação é uma operação puramente sintática: unif(P(a),P(b)) = fail mesmo se BC contém a = b necessidade de simplificar formulas depois da unificação unificar para tomar em consideração igualdade semântica * Regra de demodulação: * ex.:

19 A curiosidade matou o gato? : em L1 * Requisitos em inglês 1. Jack owns a dog. 2. Every dog owner is an animal lover. 3. No animal lover kills an animal. 4. Either Jack or curiosity killed Tuna 5. Tuna is a cat 0. Did curiosity kill the cat? * Em L1 1. x Dog(x) Owns(Jack,x) 2. x ( y Dog(y) Owns(x,y)) AnimalLover(x) 3. x AnimalLover(x) y Animal(y) Kills(x,y) 4.Kills(Jack, Tuna) Kills(Curiosity, Tuna) 5.Cat(Tuna) 6. x Cat(x) Animal(x ) 0. Kills(Curiosity,Tuna)

20 A curiosidade matou o gato? : em forma normal * Em L1 1. x Dog(x) Owns(Jack,x) 2. x ( y Dog(y) Owns(x,y)) AnimalLover(x) 3. x AnimalLover(x) y Animal(y) Kills(x,y) 4.Kills(Jack, Tuna) Kills(Curiosity, Tuna) 5.Cat(Tuna) 6. x Cat(x) Animal(x ) 0. Kills(Curiosity,Tuna) * Em forma normal 1a.Dog(D) 1b.Owns(Jack, D) 2. Dog(y) Owns(x,y)) AnimalLover(x) 3.AnimalLover(x) Animal(y) Kills(x,y) F 4.Kills(Jack, Tuna) Kills(Curiosity, Tuna) 5.Cat(Tuna) 6.Cat(x) Animal(x) 0. Kills(Curiosity, Tuna)

21 A curiosidade matou o gato? : exemplo de prova por refutação

22 Revisão de L1: estratégias de resolução * Refutação: aplicação repetitiva da regra de resolução * Problema: a cada passo, como escolher o par de fórmulas a resolver? * Heurísticas: Resolver em prioridade formulas atómicas (unit preference). Destacar um conjunto de formulas S (set of support) a resolver em prioridade Sempre resolver uma formula inicial com uma formula derivada (input resolution) Linear resolution (completa) = sempre escolher: t uma formula inicial com uma derivada qualquer t ou, 2 derivadas, uma sendo ancestral da outra


Carregar ppt "Programação em lógica e lógica Jacques Robin, DI-UFPE www.di.ufpe.br/~jr."

Apresentações semelhantes


Anúncios Google