A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Algoritmos Genéticos Jorge H. C. Fernandes Setembro de 1998.

Apresentações semelhantes


Apresentação em tema: "Algoritmos Genéticos Jorge H. C. Fernandes Setembro de 1998."— Transcrição da apresentação:

1 Algoritmos Genéticos Jorge H. C. Fernandes Setembro de 1998

2 Algoritmos Genéticos Modelo computacional de evolução biológica Abstrair o processo adaptativo de sistemas naturais Utilizações –métodos de busca –modelagem de sistemas evolucionários Baseado em genética de populações

3 Algoritmos Genéticos Strings binárias são armazenadas na memória de um computador e modificadas durante um tempo de um modo análogo a populações de indivíduos que evoluem sujeitas à seleção natural Embora simples podem ser capazes de evoluir estruturas (indivíduos) altamente complexas e interessantes

4 Indivíduos em um Algoritmo Genético soluções para problemas estratégias de jogos imagens visuais programas de computador

5 Robustez de Algoritmos Genéticos Robustez de sistemas naturais versus sistemas artificiais Métodos de Busca Tradicionais versus GAS Calculus based –continuidade de valores –existência de derivadas –não modalidades Enumerativos e Aleatórios –Pouca eficiência Algoritmos Genéticos –Pouco conhecimento analítico da solução (complexo, ruidoso, dinâmico) –Exploração paralela do espaço de soluções –Soluções próximas ao ótimo

6 Elementos de Algoritmos Genéticos Operadores Genéticos –Reprodução (based on fitness evaluation - diferencial) –Crossover (combina blocos construtures - esquemas) –Mutation (point, duplication, etc) - perturbação no ambiente para evitar mínimos locais População de indivíduos inicialmente aleatória Paralelismo implícito através dos esquemas

7 Aplicações Robótica –Com Redes Neurais Evolução –Estratégias de jogos –Ecossistemas –Sistemas sociais e políticos Otimização numérica e combinatória Projeto de Circuitos Escalonamento de tarefas

8 Co-Evolução de Estratégias de Cooperação 00 = Sempre Denuncia (AllD) 11 = Sempre Coopera (AllC) 01 = Dente por Dente (TfT) 10 = Anti-Dente por Dente (ATfT)

9 Terminologia String = cromossomo Característica = gene Valor da característica = alelo Posição da String = locus Estrutura = genótipo Estrutura decodificada, conjunto de parâmetros, alternativa de solução = fenótipo Não linearidade = epistasia

10 Algorithm GA is // start with an initial time t := 0; // initialize a usually random population of individuals initpopulation P (t); // evaluate fitness of all initial individuals of population evaluate P (t); // test for termination criterion (time, fitness, etc.) while not done do // increase the time counter t := t + 1; // select a sub-population for offspring production P' := selectparents P (t); // recombine the "genes" of selected parents recombine P' (t); // perturb the mated population stochastically mutate P' (t); // evaluate it's new fitness evaluate P' (t); // select the survivors from actual fitness P := survive P,P' (t); od end GA.

11 Exemplo Maximizar função f(x) = x**2 Intervalo de 0 a 31 Genoma de 5 bits População com quatro indivíduos

12 Strings e Valores de Fitness Número StringFitness % do Total Total

13 Seleção dos Sobreviventes População de Casais

14 Crossover | |


Carregar ppt "Algoritmos Genéticos Jorge H. C. Fernandes Setembro de 1998."

Apresentações semelhantes


Anúncios Google