A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Computação Evolucionária Aurora Pozo. Motivação...Se variações úteis para qualquer organismo devam ocorrer para que ele venha a existir, certamente indivíduos.

Apresentações semelhantes


Apresentação em tema: "Computação Evolucionária Aurora Pozo. Motivação...Se variações úteis para qualquer organismo devam ocorrer para que ele venha a existir, certamente indivíduos."— Transcrição da apresentação:

1 Computação Evolucionária Aurora Pozo

2 Motivação...Se variações úteis para qualquer organismo devam ocorrer para que ele venha a existir, certamente indivíduos assim caracterizados terão a melhor chance de serem preservados na luta por sobrevivência; e do forte princípio de hereditariedade, eles tenderão a produzir gerações com características similares. Este princípio de preservação, eu batizei, para ser sucinto, de Seleção Natural. (Darwin, 1859)

3 Ambientação Modelo Computa- cional Natureza Modelo Biológico Teoria de Darwin Teoria de Computação Evolucionária

4 Sumário Computação Evolucionária Conceitos básicos Algoritmos Genéticos Programação Genética Diferenças fundamentais

5 Computação Evolucionária Área da Inteligência Artificial que engloba um conjunto de métodos computacionais inspirados na Teoria da Evolução das Espécies. auto-organização e o comportamento adaptativo

6 Ramos Estratégias Evolucionárias: ênfase na auto-adaptação. O papel da recombinação é aceito, mas como operador secundário. Programação Evolutiva: Previsão do comportamento de máquinas de estado finitas. Algoritmos Genéticos: Indivíduos contém um genótipo formado por cromossomos Programação Genética Evolução de programas

7 Evolução Natural Embora tenham origens bastante diversas, todas essa abordagens têm em comum o modelo conceitual inicial

8 Aplicações Grande variedade de aplicações Otimização Indústria, solução de problemas: máquinas x processos, alocação de recursos, rota de veiculos. Busca Mineração de Dados, descoberta de conhecimento em bases de dados, indução de classificadores (caracteristicas x doenças, estrutura de proteinas) Aprendizado e adaptação

9 Características Comuns Usam um processo de evolução baseado em Darwin para resolver problemas computacionais de IA Inspirados na Teoria da Evolução: os indivíduos mais adaptados sobrevivem

10 Elementos Chaves de Algoritmos Evolucionarios Uma população de individuos A noção de fitness Um ciclo de nascimento e morte baseados na fitness A noção de herança

11 Visão Geral do Algoritmo Evolucionário população de pais população de filhos solução seleção recombinação

12 Visão Geral do Algoritmo Evolucionário 1. Gerar uma população inicial aleatoriamente 2. Fazer até um critério de parada: selecionar indivíduos para pais (fitness) produzir filhos selecionar indivíduos para morrer (fitness) 3. Retornar um resultado

13 Algoritmo população inicial pais selecionados filhos gerados nova população seleção (fitness) operadores genéticos cruzreprmut nova pop completa? não sim satisfeito c/ a solução? não início solução fim sim

14 Algorithmos Geneticos Holland 1960 São algoritmos de busca Objetivo: robusto, sistema adaptativo Combinam: Sobrevivência do mais ajustado com um estruturado, aleatorio intercâmbio de informações

15 AG Apesar de aleatorios, AG não funcionam unicamente com este conceito. Eles explotam informação historica para experimentar novos pontos de busca.

16 Terminologia Biologica Em AG são utilizados termos biologicos como analogia com a biologia. Cromossoma: codificação de uma possivel solução – individuo Genes: Codifica uma caracteristica particular Genotipo x Fenotipo

17 Indivíduos Material genético Conjunto de atributos da solução Cada atributo uma sequência de bits e o individuo como a concatenação das sequências de bits Codificação binaria, real, códigos

18 População Conjunto de individuos que estão sendo cogitados como solução Populações pequenas têm grandes chances de perder a diversidade necessária (exploração de todo o espaço de soluções) Populações grandes perderá grande parte de sua eficiência pela demora em avaliar a função de fitness

19 Reprodução Reprodução sexual, genes são intercambiados entre dois pais – crossover Os filhos são sujeitos a modificações, na qual bits elementares são mudados - mutação

20 Função de fitness Mede a adaptação do indivíduo ou quão boa é a solução dada por este indivíduo. Representativa do problema: diferencie uma solução boa de uma má. Heuristica de busca no espaço de estado Cuidados com o custo computacional.

21 Requisitos para usar AG Representações das possíveis soluções do problema no formato de um código genético; População inicial que contenha diversidade suficiente para permitir ao algoritmo combinar características e produzir novas soluções; Existência de um método para medir a qualidade de uma solução potencial; Um procedimento de combinação de soluções para gerar novos indivíduos na população; Um critério de escolha das soluções que permanecerão na população ou que serão retirados desta; Um procedimento para introduzir periodicamente alterações em algumas soluções da população. Desse modo mantém-se a diversidade da população e a possibilidade de se produzir soluções inovadoras para serem avaliadas pelo critério de seleção dos mais aptos.

22 Figura 1 - Estrutura básica de um Algoritmo Genético População Avaliação de Aptidão Seleção Cruzamento Mutação Operadores genéticos Critério de Parada ? Retornar Melhor Indivíduo Não Sim

23 Seleção O operador escolhe quais indivíduos participarão na criação da próxima geração

24 Exemplo IndivíduosFitness% Fitness , , , , , ,62 Total 52100,00

25

26 Roleta Inicio T = soma dos valores de aptidão de todos os indivíduos da população Repita N vezes para selecionar n indivíduos r = valor aleatório entre 0 e T Percorra sequencialmente os indivíduos da população, acumulando em S o valor de aptidão dos indivíduos já percorridos Se S >= r então Selecione o indivíduo corrente Fim se Fim Repita Fim

27 Torneio Inicio k = 0.75 Repita N vezes Escolha 2 indivíduos da população aleatoriamente r = valor aleatório entre 0 e 1 Se r < k O melhor indivíduo é escolhido Senão O pior indivíduo é escolhido Fim se Fim Repita Fim

28 Pressão de Seleção M pais K filhos Sem sobreposição Com sobreposição

29 Pressão de Seleção Generações com sobreposição Mais pressão que sem sobreposição M moderado, K=M, GA tradicionais M grande, K pequeno steady state GA Estrategias de seleção (pressão decrecente) Truncação Torneio e ranking Proporcional a fitness Uniforme Estocastica vs deterministica

30 Problemas da Roleta Tecnicamente resulta numa distribuição proporcional de indivíduos Convergência muito rápida Variância quase nula

31 Seleção por Ranking Não parametrica Os indivíduos são ordenados de acordo com sua fitness Os offspring são alocados de acordo ao ranking (pode ser linearmente)

32 Reprodução Preserva caracteristicas uteis Introduz variedade e novedades Estrategias Parentes unicos: clonar + mutuação Parentes multiplos: recombinação + mutação

33 Metodos de Recombinação Cruzamento: cria novos indivíduos misturando características de dois indivíduos pais (crossover) Copia de segmentos entre os pais Crossovers multi-ponto, dois pontos, um ponto, uniforme e inversão

34 Cruzamento Pai 1: Pai 2: Cruzamento em um ponto , Cruzamento uniforme: os filhos são formados a partir dos bits dos pais (sorteado)

35 Cruzamento em dois pontos

36 Mutação Esta operação inverte aleatoriamente alguma característica do indivíduo Cria novas características que não existiam Mantem diversidade na população

37 Balance Explotação- Exploração Pressão de seleção: explotação Reduz o espaço de busca Reprodução: exploração Expande o espaço de busca Balance Seleção forte + taxas de mutação altas Seleçao fraca + taxas de mutação baixas


Carregar ppt "Computação Evolucionária Aurora Pozo. Motivação...Se variações úteis para qualquer organismo devam ocorrer para que ele venha a existir, certamente indivíduos."

Apresentações semelhantes


Anúncios Google