A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Otimização de Funções Contínuas via Algoritmos Genéticos Adaptado do trabalho realizado por: Frederico Heitor Mônica do Amaral.

Apresentações semelhantes


Apresentação em tema: "Otimização de Funções Contínuas via Algoritmos Genéticos Adaptado do trabalho realizado por: Frederico Heitor Mônica do Amaral."— Transcrição da apresentação:

1 Otimização de Funções Contínuas via Algoritmos Genéticos Adaptado do trabalho realizado por: Frederico Heitor Mônica do Amaral

2 Problema Dada uma função contínua, diferenciável ou não, encontrar seu valor máximo dentro de um certo intervalo [a, b]. Exemplo: Determinar o máximo da função: ƒ(x) = sinc (4x) sinc (4x + 2) sinc (6x – 2) sinc (6x – 4) para x [-2, 2] onde: 1, x = 0 sinc (x) = sen (л x) / (л x), x 0

3 ƒ(x) = sinc (4x) sinc (4x + 2) sinc (6x – 2) sinc (6x – 4)

4 Método Utilizado Algoritmos Genéticos com os seguintes mecanismos: - Seleção Escolha dos pais utilizando-se Roleta Russa - Crossover Escolha aleatória do ponto de corte do cromossomo - Mutação Escolha aleatória do bit a ser trocado - Sobrevivência pelo mecanismo da roleta russa

5 Modelagem - Cada indivíduo é representado por um vetor binário de n posições, que corresponde a um ponto contido no intervalo [a, b] de definição da função. -O valor de n é determinado pela aplicação da fórmula: Cada valor real x da função f é determinado aplicando-se a fórmula: x = a + [ b - a]. B/R onde: B = valor decimal correspondente ao vetor binário v[i] R = valor decimal correspondente ao máximo valor decimal que um vetor binário de n posições pode assumir.

6 Modelagem - No problema em questão, cada indivíduo é representado por um vetor binário de 16 posições, que corresponde a um ponto contido no intervalo [-2, 2] de definição da função - Para calcular o valor da função objetivo de um determinado indivíduo representado na forma binária com 16 posições, calcula-se inicialmente o valor real x pela fórmula: x = B onde B é o número decimal que corresponde à seqüência binária de um indivíduo qualquer A seguir, aplica-se a função f

7 Modelagem - Reprodução Nesta etapa, dois indivíduos da população são escolhidos por meio do mecanismo da Roleta Russa. Aqueles que possuirem maior aptidão têm maior probabilidade de serem selecionados. O casal escolhido tem uma probabilidade p crossover de gerar filhos. Em caso positivo, cada casal gera dois filhos

8 Modelagem - Crossover Um número aleatório entre 1 e o número de bits determina a posição onde será efetuado o corte no vetor (cromossomo). Exemplo: Número Sorteado: 4 Pai 1: X X X X X X X X X Pai 2: Y Y Y Y Y Y Y Y Y Posição do Corte Filho 1: X X X X Y Y Y Y Y Filho 2: Y Y Y Y X X X X X

9 Modelagem - Mutação Um número aleatório entre 1 e o número de bits determina o bit a sofrer mutação. Exemplo: Número Sorteado: 9 I = [ ] Após a mutação: I = [ ]

10 Implementação Parâmetros utilizados: - Tamanho da população inicial = 30 - Probabilidade de Crossover = 0,80 - Probabilidade de Mutação = 0,01 - Critério de parada = 50 gerações

11 Resultados Encontrados N.° Teste Valor máximo de f(x) 1 1, , , , , , , , , , Melhor solução encontrada = 1, Média das soluções = 1, Desvio das soluções = 0,15%

12 Vantagens - Encontra-se ótimos de funções mesmo em intervalos não diferenciáveis. - Fácil implementação.


Carregar ppt "Otimização de Funções Contínuas via Algoritmos Genéticos Adaptado do trabalho realizado por: Frederico Heitor Mônica do Amaral."

Apresentações semelhantes


Anúncios Google