A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Situação Atual do Projeto IF / IEN -Geant4 L.F.A Oliveira-UFRJ Colaboradores: J.R.T. de Mello Neto - UFRJ H. Davidovich - IEN L.C. Reina - IEN.

Apresentações semelhantes


Apresentação em tema: "Situação Atual do Projeto IF / IEN -Geant4 L.F.A Oliveira-UFRJ Colaboradores: J.R.T. de Mello Neto - UFRJ H. Davidovich - IEN L.C. Reina - IEN."— Transcrição da apresentação:

1 Situação Atual do Projeto IF / IEN -Geant4 L.F.A Oliveira-UFRJ Colaboradores: J.R.T. de Mello Neto - UFRJ H. Davidovich - IEN L.C. Reina - IEN

2 Tópicos da apresentação Uso do 18 F para radiodiagnóstico e a sua produção Caverna de produção do 18 F do IEN Descrição do problema Nossos Objetivos Geant 4 Codificação Geometria do Problema Recursos computacionais Reação Nuclear Resultados preliminares Evolução Temporal Comparação com medidas experimentais Perspectivas Referências

3 Uso do 18 F para radiodiagnóstico e sua produção Glicose p n 18 O 18 F += ÁguaÁgua + Glicose marcada Tumor com Glicose marcada Glicose marcada você + tumor e+e+ + detector t ~ 2h 18 F = 18 O + e + + e E e = MeV

4 Caverna de produção do 18 F do IEN Caverna de Experiências Físicas Caverna do Flúor Caverna do Iodo Alvo Composição: 96,00 % de H 2 18 O 3,99 % de H 2 16 O 0,01 % de H 2 17 O E p = 24 MeV I p = 10 A N p = 6.25 x part/s Q = MeV V a = 300 l

5 Descrição do problema Caverna de Experiências Físicas Caverna do Flúor Caverna do Iodo Principais vilões: Fótons Neutrons

6 Nossos objetivos Aproximar o máximo possível a geometria simulada com a real. Simular a produção de 18 F e obter os valores de dose na vizinhança imediata da caverna. Comparar os valores simulados com medidas experimentais. Simular a produção de 18 F com as possíveis soluções e determinar a melhor.

7 GEANT 4 Ferramenta de simulação de partículas através da matéria,orientada a objetos, desenvolvida em c++; Propicia total domínio sobre a simulação de um detetor; Possui diversos conjuntos de dados experimentais; Poderosos geradores de números aleatórios; Aplicação em diversas áreas da física; Ferramenta de vizualização poderosa.

8 Codificação Caverna de Experiências Físicas Caverna do Flúor Caverna do Iodo G4double porta_x = 2.25*cm; // Dimensoes finais da porta G4double porta_y = 47*cm; G4double porta_z = 97*cm; G4Box* box3=new G4Box("box #3", porta_x, porta_y, porta_z); G4Tubs* cilindro=new G4Tubs("o furo",0*cm,11.25*cm,3*cm,0*deg,360*deg); G4ThreeVector translation2(0*cm,0*cm,60*cm); G4RotationMatrix *yRot90deg=new G4RotationMatrix; yRot90deg->rotateY(90*deg); G4VSolid* portacomfuro = new G4SubtractionSolid("caixa2",box3,cilindro,yRot90deg,translation2); G4LogicalVolume* door_w_hole_log = new G4LogicalVolume (portacomfuro,eFe,"uuuu",0,0,0); block01Pos_x = *cm; block01Pos_y = *cm; block01Pos_z = -39*cm; G4VPhysicalVolume* door_whole_phys = new G4PVPlacement (0,G4ThreeVector(block01Pos_x,block01Pos_y,block01Pos_z), door_w_hole_log,"porta",experimentalHall_log,true,0); G4VisAttributes* door_whole_atributos = new G4VisAttributes(G4Colour(0.5,1.0,0.0)); door_whole_atributos->SetForceSolid(true); door_w_hole_log->SetVisAttributes(door_whole_atributos); G4double block05_pLTX = 67.5*cm; G4double block05_pZ = 272.0*cm; G4double block05_pY = *cm; G4double block05_pX = 91.0*cm; G4Trap* cavernFBlock05_trap = new G4Trap("cavFBlock05_trap",block05_pZ,block05_pY,block05_pX, block05_pLTX); G4LogicalVolume* cavernFBlock05_log = new G4LogicalVolume(cavernFBlock05_trap,ConCom,"cavFBlock05_l og",0,0,0); G4double block05Pos_x = 182*cm; G4double block05Pos_y = *cm; G4double block05Pos_z = 0.0*cm; G4double phi,theta; phi = -90.0*deg; theta=0.0*deg; G4RotationMatrix MR; MR.rotateZ(phi); // Pensar depois MR.rotateX(theta); G4VPhysicalVolume* cavernFBlock05_phys = new G4PVPlacement(G4Transform3D(MR,G4ThreeVector(block05Pos _x,block05Pos_y,block05Pos_z)), "FBlock05",cavernFBlock05_log, experimentalHall_phys,false,0); G4double raioint=0*cm; G4double raioext=1.25*cm; G4double Sphi=-90.0*deg; G4double Stheta=0.0*deg; G4double Ephi=180*deg; G4double Etheta=180.0*deg; G4Sphere* decoy_box = new G4Sphere ("decoy_box", raioint,raioext,Sphi,Ephi,Stheta,Etheta); G4LogicalVolume* decoy_log = new G4LogicalVolume (decoy_box,AE,"decoy_log",0,0,0); block09Pos_x = -50.5*cm; block09Pos_y = *cm; block09Pos_z = 0*cm; G4VPhysicalVolume* decoy_phys = new G4PVPlacement (0,G4ThreeVector(block09Pos_x,block09Pos_y,block09Pos_z), decoy_log,"ALVO",experimentalHall_log,false, 0); G4VisAttributes* Decoy_atributos = new G4VisAttributes(G4Colour(1.0,0.5,0.5)); Decoy_atributos->SetForceSolid(true); decoy_log->SetVisAttributes(Decoy_atributos); G4Isotope* O16 = new G4Isotope(name="O16",iz=8,n=16,a=16.00*g/mole); G4Isotope* O17 = new G4Isotope(name="O17",iz=8,n=17,a=17.00*g/mole); G4Isotope* O18 = new G4Isotope(name="O18",iz=8,n=18,a=18.00*g/mole); G4Element* OE = new G4Element(name="Oxigenio Enriquecido",symbol="Oe", ncomponents=3); OE->AddIsotope(O16,abundance=3.99*perCent); OE->AddIsotope(O17,abundance=0.01*perCent); OE->AddIsotope(O18,abundance=96.0*perCent); // Definicao da Agua Enriquecida (AE) density=1.*g/mole; G4Material* AE = new G4Material(name="Agua Enriquecida",density,ncomponents=2); AE->AddElement(OE, natoms=1); AE->AddElement(H, natoms=2); a = *g/mole; density = 11.35*g/cm3; G4Element* Pb = new G4Element(name="Lead", symbol="Pb",z=82., a); a= *g/mole; density = e-3*g/cm3; G4Element* H = new G4Element(name="Hidrogenio", symbol="H",z=1., a); a= *g/mole; density = e-3*g/cm3; G4Element* O = new G4Element(name="Oxigenio", symbol="O",z=8., a); a= *g/mole; density = *g/cm3; G4Element* Na = new G4Element(name="Sodio",symbol="Na", z=11., a); a=24.312*g/mole; density = 1.738*g/cm3; G4Element* Mg = new G4Element(name="Magnesio",symbol="Mg", z=12., a); a = 26.98*g/mole; density = 2.7*g/cm3; G4Element* Al = new G4Element(name="Aluminum",symbol="Al", z=13., a); a=28.086*g/mole; density = 2.33*g/cm3; G4Element* Si = new G4Element(name="Silicio", symbol="Si",z=14., a); a=32.064*g/mole; density = 2.07*g/cm3; G4Element* S = new G4Element(name="Enxofre", symbol="S",z=16., a); a=40.08*g/mole; density = 1.55*g/cm3; G4Element* Ca = new G4Element(name="Calcio",symbol="Ca", z=20., a); a=55.847*g/mole; density = 7.874*g/cm3; G4Element* Fe = new G4Element(name="Ferro",symbol="Fe", z=26., a); density = 2.10*g/cm3; G4Material* ConCom = new G4Material(name="Concreto Comum", density, ncomponents=9); ConCom->AddElement(H, fractionmass=0.56*perCent); ConCom->AddElement(O, fractionmass=49.79*perCent); ConCom->AddElement(Na, fractionmass=1.7*perCent); ConCom->AddElement(Mg, fractionmass=0.23*perCent); ConCom->AddElement(Al, fractionmass=4.56*perCent); ConCom->AddElement(Si, fractionmass=31.56*perCent); ConCom->AddElement(S, fractionmass=0.13*perCent); ConCom->AddElement(Ca, fractionmass=10.23*perCent); ConCom->AddElement(Fe, fractionmass=1.24*perCent); 6400 linhas de comando + libraries

9 Geometria do problema Visão da caverna a partir da porta Visão da porta

10 Demonstração Capacidade de vizualização do GEANT 4

11 t ativo =0.01ns

12

13

14 Recursos Computacionais Computador paralelo Olympus m062Pentium-Pro200MHz256Mb2.7Gb m072Pentium-Pro200MHz256Mb2.7Gb m082Pentium II453MHz128Mb8.0Gb m092Pentium II453MHz128Mb8.0Gb m102Pentium II333MHz256Mb36Gb m01 m06 m07 m08 m09 m10 m11 m12 L

15 Simulação 1 Realizamos hipóteses sobre a reação nuclear Simulação da colisão de 6.4x10 8 partículas Resultados preliminares apresentados no XXII ENFPC - Nov. 2002

16 Reação nuclear Hipóteses: Sempre há colisão A emissão de neutrons se dá de forma isotrópica Simular somente a reação p-n

17 Regiões de detecção na simulação 1 Caverna de Experiências Físicas Caverna do Flúor Caverna do Iodo x y

18 Resultados preliminares (a) Fótons

19 Resultados preliminares (b) Fótons

20 Resultados preliminares (c) Neutrons

21 Resultados preliminares (d) Neutrons

22 Simulação 2 Manutenção da hipótese sobre a reação nuclear Simulação da colisão de 6.4x10 9 partículas Adição de detetores de fótons e neutrons Comparação das medidas simuladas com as experimentais Resultados apresentados no XXIII Jornada de Iniciação Científica - UFRJ

23 Mudança na Geometria Visão da porta com detectores Detectores na simulação: Eficiência: 100% Precisão: 100 % Leitura: Energia da partícula

24 Evolução Temporal 0 ns 0,01 ns0,5 ns1,0 ns

25 Comparação das medidas PontoDose SimuladaDose Experimental 1N 2N 3N 1G 2G 3G 57±29 mSv/h 725 ± 360 mSv/h 630 ± 310 mSv/h 0 ± 1 mSv/h 30 ± 30 Sv/h 260 ± 180 Sv/h 19±1,9 mSv/h 2,5±0,25 mSv/h 150±15 Sv/h 1,72±0,19 mSv/h 225 ±11,3 Sv/h 56±2,8 Sv/h Simulação = 1,024 msFator de Correção: 3.52x10 6 Resultados Excelentes

26 Perspectivas Averiguar quão bem o GEANT4 simula as reações nucleares; Seguir com os objetivos mencionados anteriormente.

27 Referências GEANT4 - Users manual for applications developers GEANT4 - Software reference guide GEANT4 - Physics reference manual Halliday & Resnick, Fundamentos de Física vol4. American Nuclear Society neutron and gamma-ray fluence-to-dose factors Analytical method for calculating neutron bulk shielding in a medium -energy accelerator facility Takashi Kato Monte Carlo Simulation of Electron Beams for Radiotherapy - EGS4, MCNP4b and GEANT3 Intercomparison Skyshine - A paper tiger?, A. Rind Introduction to Nuclear Physics - H. Enge Techniques for Nuclear and Particle Physics Experiments, A How-to Approach - W.R. Leo Numerical Recipes in C


Carregar ppt "Situação Atual do Projeto IF / IEN -Geant4 L.F.A Oliveira-UFRJ Colaboradores: J.R.T. de Mello Neto - UFRJ H. Davidovich - IEN L.C. Reina - IEN."

Apresentações semelhantes


Anúncios Google