Redes de Computadores Redes TCP/IP.

Slides:



Advertisements
Apresentações semelhantes
Protocolos de Redes Professora Marcela Santos Camada de Rede – Multicast e NAT.
Advertisements

Módulo VI Endereçamento IPv6.
I.P. INTERNET PROTOCOL EQUIPE: BRUNO GODARTH DANIELE COLETHO DE SOUZA
Sistemas Paralelos e Distribuídos
3. Mapeamento de Endereço Físico em endereço de rede
Bruno Rafael de Oliveira Rodrigues
Administração e Projeto de Redes
Funcionamento da Internet
Redes de Computadores A Camada de Rede.
Configuração de um servidor DHCP
Edgard Jamhour DHCP: Dynamic Host Configuration Protocol.
Exercícios de Revisão Redes de Computadores Edgard Jamhour
Redes de Computadores Aula Prática 4
Arquitetura TCP/IP DHCP, Redes classe A, B e C.
Camada de Transporte.
Subnet; Roteamento básico; ICMP..
Obtenção de IP TCP UDP.
PROTOCOLOS DE COMUNICAÇÃO
Visão Geral de Equipamentos de Rede
REDES DE COMPUTADORES II
Prof. Edivaldo Serafim IFSP – Capivari 04/03/2013
Aula 6- Camada 2 (modelo TCP/IP)
Universidade do Vale do Rio dos Sinos - São Leopoldo -
Modelo de referência OSI
Prof. Edwar Saliba Júnior Março de 2009
CCNA Exploration Camada de Rede OSI.
Inicio. Mesmo que um novo projeto do protocolo IP não fosse iniciado a Internet continuaria funcionando, porém, ela teria muita dificuldade de crescer,
Exercícios de Revisão Redes de Computadores Edgard Jamhour
Redes Aula 7 Professor: Marcelo Maia.
DHCP Trabalho Realizado por: Rui Runa Monteiro, nº14.
Endereços IP ICORLI 2011/2012.
IC II - Prof. Msc. Allan K. Luizi - UNEMAT
Equipamentos de Redes Aula 3
Endereçamento de Rede IPv4
Redes de Computadores Prof Rafael Silva.
Modelos de Referência OSI e TCP/IP
Protocolo DHCP Willamys Araújo.
O Modelo OSI Guilherme Guimarães.
CCNA 1 – Modelos OSI e TCP/IP
Endereçamento IP.
Protocolos de comunicação: IP
Roteadores Roteadores são pontes que operam na camada de Rede do modelo OSI. Tomando como base o protocolo mais usado hoje em dia, o TCP/IP, o protocolo.
Formato do datagrama IP
REDES DE COMPUTADORES II
Pontes e Switches Como vimos anteriormente, os repetidores são usados para expandir a extensão da rede, mas que replicam todos os quadros que recebem.
Fundamentos à Redes de Computadores
Endereçamento IP.
Visão Geral de Equipamentos de Rede
FTIN Formação Técnica em Informática Módulo Sistema Proprietário Windows AULA 04 Prof. André Lucio.
DHCP 1. Introdução Inicialmente, a necessidade de automatizar a requisição e distribuição do endereço IP deu-se em função da existência de estações.
1 © 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 5 - Fundamentos de Endereçamento e Roteamento IP 1.Visão Geral das Funções da Camada de Rede:
Redes de Computadores Prof Rafael Silva.
DHCP Dynamic Host Configuration Protocol
MODELO DE REFERÊNCIA TCP/IP
Arquitetura TCP/IP Redes de Computadores.
Disciplina de: Comunicação de Dados Professor: Carlos Pereira Trabalho Realizado por: João Santos.
Modelo OSI Disciplina: Comunicação de Dados Ricardo Bento 12ºL nº11.
Falso, essa é a função fowarding, o roteamento determina a rota tomada pelos pacotes. 1) No roteador, a função roteamento é encaminhar pacotes que chegam.
Camada de Inter-Redes do modelo TCP-IP Endereço IP e DHCP
DHCP Dynamic Host Configutation Protocol Charles Felipe Oliveira Viegas Douglas Xavier T. de Oliveira.
TCP/IP.
Trabalho elaborado por: -Daniel Nº26 -André Nº3. * A camada de rede do modelo OSI é responsável por controlar a operação da rede de um modo geral. As.
Introdução as Redes TCP/IP Roteamento com CIDR
Informática Industrial N8INF Prof. Dr. Cesar da Costa 5.a Aula: Endereçamento IP.
REDES DE COMPUTADORES II
Rede de Computadores (REC) Prof. Jackson Mallmann
Prof. Ivair Teixeira Redes de Computadores.
DNS, IP e GATEWAY Os componentes de rede citados anteriormente servem, basicamente, para permitir acesso à rede e à Internet, seja em ambiente doméstico.
Redes de Computadores Endereçamento IP Básico Prof. Sales Filho.
Endereçamento IP Básico
Transcrição da apresentação:

Redes de Computadores Redes TCP/IP

Fundamentos Atualmente é a pilha de protocolos mais usada em redes locais: Devido a popularização da Internet; Foi criado para ser utilizado na Internet. Possui arquitetura aberta e qualquer fabricante pode adotar a própria versão do TCP/IP; IP --> protocolo de rede TCP-->protocolo de transporte

Endereçamento IP IP --> protocolo roteável que foi criado pensando na interligação de diversas redes; Utiliza um esquema de endereçamento lógico chamado endereçamento IP; Em uma rede TCP/IP cada dispositivo conectado em rede necessita usar pelo menos um endereço IP; Esse endereço permite identificar o dispositivo e a rede a qual ele pertence;

Interligação de Redes (1) Roteador 1 Roteador 2

Interligação de Redes (2) Quando um computador da rede 1 quer enviar um dado para um computador da rede 2, ele envia o pacote de dados ao roteador 1, que fica responsável por encaminhar esse pacote ao computador de destino; No caso que um computador da rede 1 quer enviar um pacote para um computador da rede 3, ele envia o pacote de dados ao roteador 1, que então repassará esse pacote diretamente ao roteador 2, que então se encarregará de entregar esse pacote ao computador de destino na rede 3;

Identificação da máquina Campos do Endereço IP Identificação da Rede Identificação da máquina O endereço IP é um número de 32 bits, representado em decimal em forma de 4 números de 8 bits, separados por um ponto, no formato a.b.c.d; Teoricamente, uma rede TCP/IP pode ter até 4.294.967.296 (ou 2564); Divisão em classes de endereços;

Classes de IP (1) Classe A --> o primeiro número identifica a rede, os demais três números indicam a máquina. Classe B --> os dois primeiros números identificam a rede, os dois demais identificam a máquina. Classe C --> Os três primeiros números identificam a rede, o último número indica a máquina. A escolha do tipo de classe de endereçamento (A, B ou C) é feita com base no tamanho da sua rede; A maioria das redes locais utilizam endereços classe C;

Classes de IP (2) Endereços especiais, reservados para redes privadas: Classe A:10.0.0.0 a 10.255.255.255 Classe B:172.16.0.0 a 172.31.255.255 Classe C: 192.168.0.0 a 192.168.255.255

Exemplo de uma Rede TCP/IP 192.168.0.2 192.168.0.4 192.168.0.1 192.168.0.3 192.168.0.5

Exemplo de uma Rede TCP/IP conectada a Internet (1) 200.123.123.1 200.123.123.3 200.123.123.5 200.123.123.6 Roteador 200.123.123.2 200.123.123.4 200.321.321.1 Rede 2 - 200.321.321.0

Exemplo de uma Rede TCP/IP conectada a Internet (2) Todos os endereços das estações são endereços válidos na internet; Uma outra solução é utilizar o esquema da tradução: Tradução estática - Um certo endereço privado é sempre convertido em um mesmo endereço público; Tradução dinâmica - Geralmente utilizada por clientes, onde nem sempre o endereço privado utiliza o mesmo endereço público. Muito comum se utilizar o protocolo DHCP.

Máscara da Rede (1) Também chamada de subnet mask; A máscara é formada por 32 bits no mesmo formato que o endereçamento IP; Cada bit 1 da máscara informa a parte do endereço IP que é usada para o endereçamento da rede; Cada bit 0 informa a parte do endereço IP que é usada para o endereçamento das máquinas.

Máscara da Rede (2) Classe A : 255.0.0.0 Classe B:255.255.0.0 Classe C:255.255.255.0 O número 255 eqüivale a um grupo de 8 bits (1 byte)com todos os seus bits 1. Pode ser utilizada uma máscara fora dos seus valores padrões --> Quando há necessidade de segmentação da rede.

Exemplo de Rede Segmentada (1) Rede Local: 200.123.123.1 a 200.123.123.31 -->Máquinas 255.255.255.224 --> Máscara Rede 1: 200.123.123.32 a 200.123.123.63 -->Máquinas

Exemplo de Rede Segmentada (2) 200.123.123.64 a 200.123.123.127 -->Máquinas 255.255.255.192 --> Máscara Rede 3: 200.123.123.128 a 200.123.123.254 -->Máquinas 255.255.255.128 --> Máscara

Exemplo de Rede Segmentada (3) Roteador B 200.123.123.2 Rede 1 Rede 2 Roteador C 200.18.123.3 Internet Rede 3 Roteador D 200.123.123.4 Roteador A 200.123.123.1 Rede Local

Exemplo de Rede Segmentada (4) Da maneira que está feita a configuração da figura anterior, um pacote destinado ao endereço 200.123.123.200: Será recusado pelos roteadores B e C, mas aceito pelo roteador D, que irá transmiti-lo para rede 3; Se a máscara da rede não fosse usada, os roteadores B e C enviariam esse pacote desnecessariamente para as redes 1 e 2 congestionando essas redes sem necessidade;

ARP (1) Address Resolution Protocol; O endereço IP é um endereço lógico (virtual), sendo assim como ele poderá ser convertido para endereços MAC? Protocolo responsável por fazer a conversão entre os endereços IPs e os endereços MAC da rede; ARP funciona mandando primeiramente uma mensagem de broadcast para a rede perguntando, a toas as máquinas, qual responde pelo endereço IP a qual pretende-se enviar um pacote.

ARP (2) Assim, a máquina que corresponde a tal endereço responde, identificando-se e informando o seu endereço MAC para que a transmissão de dados entre as máquinas possa ser estabelecida; Para não ocupar a rede muitas vezes com broadcasts, o transmissor armazena os endereços IPS recentemente acessados e seus endereços MAC correspondentes em uma tabela na memória.

IP (1) Internet Protocol; Na camada IP (rede) os dados são empacotados em datagramas; Na camada física, os datagramas serão empacotados em quadros; Protocolo não orientado a conexão --> Não verifica se o datagrama chegou ou não ao destino; Função principal: roteamento

IP (2) A função de roteamento é desempenhada com o auxilio dos roteadores de rede, que escolhem os caminhos mas rápidos entre a origem e o destino, já que em redes grandes há inúmeros caminhos que um pacote pode tomar para chegar ao seu destino; Cabeçalho (20 ou 24 bytes) Dados (65.511 ou 65.515)

Campos do Datagrama IP Versão --> atualmente está na versão 4; Tamanho do cabeçalho; Tipo de serviço; Tamanho total; Flags; TTL (tempo de vida); Checksum do cabeçalho; Endereço IP da origem e do destino; Dados.

ICMP (1) Protocolo de controle de mensagens na Internet; É somente um mecanismo usado para informar a máquina transmissora da ocorrência de um erro com o datagrama enviado, através de mensagens enviadas pelos roteadores da rede; Ele não se preocupa em corrigir o erro nem tampouco em verificar a integridade dos datagramas; A mensagem ICMP é transmitida usando um datagrama IP.

ICMP (2) Apesar do ICMP ser encapsulado em um datagrama IP, não é considerado um protocolo de alto nível (como TCP ou UDP) Mensagem ICMP Datagrama IP Cabeçalho do quadro Área de dados do quadro

DHCP

DHCP O Dynamic Host Configuration Protocol é derivado do Protocolo "Standard Bootstrap" (BOOTP - RFCs 951 e 1084) que o concedeu a tarefa de prover endereços de IP Dinâmicos (como também para estações de trabalho que não possui disco de boot).

DHCP Como você pode notar isso facilita a vida do administrador de rede pois ele pode configurar toda sua rede TCP/IP de forma centralizada no servidor de DHCP. Sempre que um novo host entra no segmento da rede, ele é servido pôr este servidor

DHCP

DHCP Para que os endereços não se percam (caso um cliente se conecte só uma vez), os administradores de rede definem um tempo limite para o endereço alugado. Quando chega a metade desse tempo, o cliente solicita uma renovação e o servidor de DHCP estende o aluguel

DHCP Se novamente o cliente não obtém resposta o último pedido será feio quando encerrar o tempo limite do aluguel. Nesse caso se não houver resposta o cliente pode se autoconfigurar com a faixa definida pelo APIPA (169.254.x.y) onde x e y são números aleatórios (x = 0 - e 255, y = 1 - 254)

DHCP Os protocolos BOOTP e DHCP usam broadcast para executar seu trabalho. Roteadores normalmente não repassam broadcast de uma interface para outra; então, um Relay Agent deve ser usado para passar a comunicação de um segmento para outro

DHCP DHCP Scopes   O Escopo DHCP é um agrupamento administrativo que identifica a faixa de possíveis endereços IP para todos os clientes DHCP em uma sub-rede física. Ele define uma sub-rede lógica para o qual os serviços de DHCP serão oferecidos e também permite ao servidor identificar parâmetros de configuração que serão dados a todos os clientes de DHCP na sub-rede

DHCP Address Pools   Uma vez definido o Escopo DHCP e a faixa de exclusão, a faixa de endereços restante é chamada de "available address pool" dentro do Escopo DHCP. Esses endereços agrupados podem então ser servidos de forma dinâmica aos clientes de DHCP na sub-rede.

DHCP Address Pools   Uma vez definido o Escopo DHCP e a faixa de exclusão, a faixa de endereços restante é chamada de "available address pool" dentro do Escopo DHCP. Esses endereços agrupados podem então ser servidos de forma dinâmica aos clientes de DHCP na sub-rede.

DHCP Exclusion Ranges   Uma faixa de exclusão é um grupo de endereços IP dentro de um Escopo DHCP que estarão excluídos de dentro da faixa de endereços oferecidos pelo Escopo DHCP.

DHCP Reservations   Reservas permitem o aluguel de endereços permanentes pelo servidor de DHCP. Elas asseguram que um dispositivo de hardware especificado na sub-rede sempre receba o mesmo endereço de IP.

DHCP Leases   Um aluguel é a duração de tempo que um servidor de DHCP especifica que um computador cliente pode usar um endereço IP.

EXERCÍCIOS Crie uma rede classe A com 3 computares Crie uma rede classe B com 2 computadores Interligue essas redes por um roteador Crie uma rede com computadores classe C Interligue as 3 redes resultantes com 2 roteadores