Outras Ligas não Ferrosas

Slides:



Advertisements
Apresentações semelhantes
«Forte do Bom Sucesso (Lisboa) – Lápides 1, 2, 3» «nomes gravados, 21 de Agosto de 2008» «Ultramar.TerraWeb»
Advertisements

Classificações e Aplicações dos Aços
EFEITO DOS ELEMENTOS DE LIGA SOBRE O AÇO
Propriedades físicas representativas de
EVOLUÇÃO E DESAFIOS DAS EXPORTAÇÕES DE CARNES DE AVES E SUÍNOS
Ligas Metálicas Uma liga é uma solução sólida composta por dois ou mais metais, ou por um metal ou metais e um ou mais não-metais.
A busca das mulheres para alcançar seu espaço dentro das organizações
BRONZES (Cu+Sn) CARACTERÍSTICAS GERAIS DOS BRONZES
Vamos contar D U De 10 até 69 Professor Vaz Nunes 1999 (Ovar-Portugal). Nenhuns direitos reservados, excepto para fins comerciais. Por favor, não coloque.
João Lúcio de Azevedo ESALQ/USP, UMC, UCS, CBA
EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS
Transformações de fases em metais e microestruturas
Exercício do Tangram Tangram é um quebra-cabeças chinês no qual, usando 7 peças deve-se construir formas geométricas.
Nome : Resolve estas operações começando no centro de cada espiral. Nos rectângulos põe o resultado de cada operação. Comprova se no final.
LIGAS DE NIÓBIO MATERIAIS SUPERCONDUTORES 1960  Nb-65Ti escolha para materiais supercondutores em substituição às ligas de NbZr. Vantagens: facilidade.
Curso de ADMINISTRAÇÃO
RECURSOS METÁLICOS NO MUNDO
Aços de alta liga – Aços inoxidáveis
Estruturas cristalinas do tipo AX2
AULA 02 Materiais não ferrosos PROF: Elias Junior
Introdução a tecnologia dos materiais
CORROSÃO Faculdade de Tecnologia e Ciências Curso de Engenharia Civil
UPE- UNIVERSIDADE DE PERNAMBUCO ESCOLA POLITÉCNICA
Renda até 2 SM.
Influência dos Elementos de Liga
Diagnósticos Educativos = Diagnósticos Preenchidos 100% = 1.539
MECÂNICA - DINÂMICA Exercícios Cap. 13, 14 e 17. TC027 - Mecânica Geral III - Dinâmica © 2013 Curotto, C.L. - UFPR 2 Problema
BIOMATERIAIS E BIOMECÂNICA TQ-064
Discordâncias e Mecanismos de Aumento de Resistência
ENGENHARIA DE PRODUÇÃO Disc. : Processos de Fabricação II Prof
Aula 7 – Parâmetros de Usinagem Ferramentas de corte
CATÁLOGO GÉIA PÁG. 1 GÉIA PÁG. 2 HESTIA PÁG. 3.
PROCESSOS PRINCIPAIS Alunos - Grau de Satisfação 4971 avaliações * Questões que entraram em vigor em 2011 ** N.A. = Não Aplicável Versão: 07/02/2012 INDICADORES.
Indicadores do Mercado
Funcionários - Grau de Satisfação 2096 avaliações
METAIS INTRODUÇÃO: A ULTILIZAÇÃO DE METAIS PELO HOMEM TEVE INÍCIO NO PERIODO COMPREENDIDO ENTRE 5000 e 4000 anos a.C. COM DESTAQUE PARA O OURO E O COBRE.
Tributação da Exportação nas Empresas optantes pelo Simples Nacional
Projeto Medindo minha escola.
Tecnologia Mecânica Tratamentos Térmicos.
TRATAMENTO TÉRMICO Tratamento Térmico:
CONCEITOS FUNDAMENTAIS
Olhe fixamente para a Bruxa Nariguda
Definição de metal. É um elemento, substância ou liga metálica caracterizado por sua boa condutividade eléctrica e de calor, geralmente apresentando cor.
Equipe Bárbara Régis Lissa Lourenço Lucas Hakim Ricardo Spada Coordenador: Gabriel Pascutti.
ES242 Eduardo Harada Panadés Guilherme Andrigueti
LEILÃO nº 3/2014 Dia 12 de setembro, às 14 horas.
Cap 2a – Beneficiamento do Aço
Introdução a tecnologia dos materiais
Aula 3 – Parâmetros de Usinagem
Grupo: Bruno Menezes Caio Simões Eduardo Watanabe Fernando Brandão
Metais e Metalurgia Eric Alexsander Poscidônio de Souza Cléderson Vinícios Rosa
Diagrama de Fases – Parte 2
Materiais Metálicos Aula 09.
Estanho Aula 13.
Alumínio Aula 11.
Obtenção do Alumínio ALUMÍNIO.
PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS
Para ter acesso a esse material acesse:
Aula 13 – Ligas não ferrosas
Tratamento térmico no latão
BRONZE.
Produtos Metálicos Continuação. Tipos, características e aplicações dos materiais metálicos Aços:  Aços carbono comuns.
Ligas de Cobre, Magnésio, Cobalto, Níquel e Superligas.
COLÉGIO NOSSA SENHORA DO ROSÁRIO “METAIS E LIGAÇÃO METÁLICA” QUÍMICA – SETOR B – 1º ANO EM Professor: João Eduardo Lucateli 2011.
Curso Técnico Eletromecânica Soldagem Básica
Aula 10 – Aços carbono e baixa liga
Para ter acesso a esse material acesse:
Grupo do Titânio ( grupo 14 )
Aula 16 – Ligas não ferrosas
GRUPO DO TITÂNIO 2 INTRODUÇÃO O Ti é de importância industrial Grandes quantidades de TiO 2 são usadas como pigmento e como “carga”, e o metal Ti é importante.
Transcrição da apresentação:

Outras Ligas não Ferrosas CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE DE ENSINO DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE METAL MECÂNICA - DAMM Outras Ligas não Ferrosas ProIn II – Mecânica Industrial Prof. Henrique Cezar Pavanati, Dr. Eng E-mail: pavanati@cefetsc.edu.br

LIGAS NÃO FERROSAS Ligas leves Ligas resistentes à corrosão Ligas Be Ligas Mg Ligas leves Ligas Ti Ligas Al Ligas resistentes à corrosão Ligas Cu Ligas Ni Ligas Pb Ligas Sn Ligas baixo ponto de fusão Ligas Zn Ligas Ta Ligas W Ligas Refratárias Ligas Re Ligas Nb Ligas Mo

LIGAS LEVES

 Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Berílio (Be) LIGAS LEVES  Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Berílio (Be) Ligas de Magnésio (Mg)

TITÂNIO E LIGAS

TITÂNIO E LIGAS - CARACTERÍSTICAS Titânio – Metal recente (anos 50) Metal abundante, porém de difícil processamento; Quando puro é um metal fácil de se trabalhar Baixa densidade (4,5 g/cm3) Ponto de fusão “médio-alto” (T=1668ºC) Liga com excelente relação resistência/peso Elevada resistência mecânica (LR até 1400 MPa) Excelente resistência à corrosão abaixo de 550ºC Acima de 550ºC baixa resist à corrosão e fluência Elevada biocompatibilidade

TITÂNIO E LIGAS - HISTÓRICO TITÂNIO E LIGAS - HISTÓRICO Descoberto na Inglaterra por William Justin Gregor em 1791, a partir do mineral ilmenita (FeTiO3). Novamente descoberto mais tarde por Heinrich Klaproth, no mineral rutilo (TiO2), que o denominou de titânio em 1795. Em 1946 William J. Kroll desenvolveu um método para produzi-lo comercialmente; O processo Kroll consiste na redução do TiCl4 com magnésio, método que continua sendo utilizado atualmente. ILMENITA RUTILO

TITÂNIO PURO - COMPARATIVO

(CCC) Cúbico de corpo centrado (HCP) hexagonal compacta TITÂNIO PURO - FASES (CCC) Cúbico de corpo centrado (HCP) hexagonal compacta

TITÂNIO PURO - MICROESTRUTURA

TITÂNIO PURO - CARACTERÍSTICAS 99,5 a 99,0% Ti (0,08%C, 0,18 a 0,40% O, 0,20 a 0,50% Fe) oxigênio considerado elemento de liga impurezas - C, N, H melhor resistência a corrosão que as ligas de Ti excelente resistência a meios químicos (HCl, HNO3) usado na indústria de processamento de petróleo

Ti puro Ligas a Ligas quase a Ligas a- b Ligas b Al,O,N,H,Ga Excelente resistência à corrosão Alguma ductilidade (apesar de ser HC) Baixa resistência mecânica Ti puro Ligas não endurecíveis por T.T. – endurecimento por solução sólida Al principal elemento de liga – até 5~6% Resistência moderada a alta temperatura Boas tenacidade, resist fluência, soldabilidade Ligas a Al,O,N,H,Ga Ligas quase a Alguma fase b numa microestrutura essencialmente a Adiciona-se Sn e Zr para manter a resistência diminuindo o Al Altas resist mecânica, tenacidade, resist fluência, soldabilidade Resist aumentada com envelhecimento (=> menor resist corrosão) V,Mo (peq.quant.) Ligas a- b Balanço conveniente de elementos => Microestrutura bifásica Os tratamentos térmicos controlam microestrutura e propriedades (ou duplex) Ligas b Grande adição de V e Mo => b à temp ambiente (não é usual) Estrutura b obtida com tratamento de envelhecimento Grande ductilidade – fácil deformação a frio São soldáveis Ligas mais pesadas V,Mo,Nb,Cr,Fe,Ta

TITÂNIO E LIGAS – LIGAS ALFA Ti-5%Al-2,5%Sn - importante liga comercial - estrutura HCP Al e Sn estabilizam a fase a no Ti e aumentam a resistência mecânica por solução sólida. - presença de pequena quantidade de fase b devido ao Fe (0,3%) Al aumenta a resistência mecânica do Ti e diminui a densidade 250x 250x Partículas b (presença do Fe) matriz a grosseira fase a fase a acicular matriz a Ti –5%Al-2,5%Sn Recozido 30 min a 1117 oC e resfriado no forno durante 6 h até 788 oC e até Tamb em 2 h. Ti –5%Al-2,5%Sn Recozido 30 min a 1117 oC e resfriado ao ar Ti –5%Al-2,5%Sn Aquecido a 815 oC e resfriado ao ar

TITÂNIO E LIGAS – LIGAS QUASE ALFA - contém certa quantidade de fase b na matriz a Mo e V (1 a 2%) estabilizam a fase b Sn e Zr são adicionados para reduzir a quantidade de Al mantendo a resistência mecânica - desenvolvido para aplicações em motores de aviões 250x 250x grãos b grãos a fase a fase a acicular fase b Ti –8%Al-1%Mo-1%V - forjado a 899 oC Ti –8%Al-1%Mo-1%V - forjado a 1004 oC e resfriado ao ar

TITÂNIO E LIGAS – LIGAS ALFA-BETA contém um ou mais elementos estabilizadores da fase b liga mais importante Ti-6%Al-4%V são ligas endurecidas por tratamento térmico e envelhecidas - boa soldabilidade e trabalhabilidade 250x 250x intergranular b grãos a fase a intergranular b martensita a Ti –6%Al-4%V 1 h a 954 oC e resfriado no forno Ti –6%Al-4%V 1 h a 1066 oC e resfriado no forno Ti –6%Al-4%V 1 h a 1066 oC e resfriado em água

TITÂNIO E LIGAS – LIGAS BETA elementos estabilizadores da fase b (CCC) - V, Mo, Cr e Fe liga mais importante Ti-13%V-11%Cr-3%Al maior densidade que as anteriores (+ qtidade V e Cr) grãos b precipitados a grãos b equiaxiais 250x 250x Ti –13V-11Cr-3Al Ti –3Al-8V-6Cr-4Zr-4Mo envelhecido 6 h a 677 oC

TITÂNIO E LIGAS – TRATAMENTOS TÉRMICOS Recozimentos Algumas ligas permitem tratamento térmico de envelhecimento

TITÂNIO E LIGAS – PROPRIEDADES MECÂNICAS

TITÂNIO E LIGAS – FORMAS DE FORNECIMENTO

ELEMENTO QUÍMICO TITÂNIO

TITÂNIO E LIGAS – APLICAÇÕES Devido à grande relação resistência/peso: Aeronáutica e aeroespacial Motores a jato (estrut. e compon.) Pás e discos de turbinas Carros de competição artigos desportivos em geral Devido à grande resistência à corrosão: Processamento químico Submersíveis Implantes biomédicos

TITÂNIO E LIGAS – APLICAÇÕES

  Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Berílio (Be) LIGAS LEVES  Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Berílio (Be) Ligas de Magnésio (Mg) 

BERÍLIO E LIGAS

BERÍLIO E LIGAS - CARACTERÍSTICAS Densidade muito baixa (1,84 g/cm3) próxima a de um polímero Muito frágil (pouquíssima ductilidade a Tamb) Grande afinidade com oxigênio formando BeO (tóxico) Temperatura de fusão de 1287 ºC A liga mais importante é a Lockalloy (62Be-38Al) Alta rigidez (pouco elástica) no estado puro Ligas de alto custo; Péssima soldabilidade Usinabilidade ruim Excelente estabilidade dimensional

BERÍLIO E LIGAS – TRATAMENTO TÉRMICO Como o berílio forma poucas ligas também não é comum se fazer tratamentos térmicos Por não sofrer encruamento (pouca ductilidade) não necessita de recozimentos

BERÍLIO E LIGAS – PROPRIEDADES MECÂNICAS

BERÍLIO E LIGAS – PROPRIEDADES MECÂNICAS Relação Resistência / Peso Temperatura (ºC)

BERÍLIO E LIGAS – APLICAÇÕES Be puro é usado em armamento, pontas de mísseis, tubulações estruturais, componentes ópticos e instrumentos de precisão de baixo peso. Ligado com Al, é usado em aeronaves, satélites e pinças de freio a disco em automóveis de competição Parte das pinças do freio a disco de carros de competição Carcaça de um Giroscópio de berílio Parte de um míssil produzida de berílio Janela de berílio Transparente aos raios X

   Ligas de Alumínio (Al) Ligas de Titânio (Ti) LIGAS LEVES  Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Berílio (Be) Ligas de Magnésio (Mg)  

MAGNÉSIO E SUAS LIGAS

MAGNÉSIO E SUAS LIGAS - MINÉRIOS Percentual de magnésio encontrado em diferentes minerais Boucita Magnesita Olivita Kieserita Dolomita Carnalita Agua do mar 41 % 28 % 15 % 13 % 8 % 0,13 %

MAGNÉSIO - CARACTERÍSTICAS Peso especifico 1,74 g/cm³ Ponto de fusão 651° C Ponto de ebulição 1095° C 3º metal mais abundante Processamento caro Baixa ductilidade Possível de soldar É a liga estrutural de menor densidade. Sua estrutura cristalina é hexagonal compacta (HCP) Boa usinabilidade em alta velocidade Boa resistência à corrosão e ao impacto Inflamável (cuidados na usinagem)

Endurecimento por precipitação Recozimentos MAGNÉSIO E LIGAS – TRATAMENTOS TÉRMICOS Endurecimento por precipitação Recozimentos Endurec. por deformação plástica possível, mas em pequeno grau

Aumento de resistência sempre por solução sólida MAGNÉSIO E LIGAS – ELEMENTOS DE LIGA Aumento de resistência sempre por solução sólida Independente / dos elementos de liga, os diagramas de fases são idênticos Adição de Al seguido de endurec. precipitação - aumento de resist. Refinar o tamanho de grão – Zr Aumento de resist. corrosão – Mn Aumento resist. mecânica e fluência – Th, Ce

MAGNÉSIO E LIGAS – PROPRIEDADES MECÂNICAS

MAGNÉSIO E LIGAS – APLICAÇÕES Quase todas de peças fundidas Blocos de motor, coluna de direção, carcaças de dispositivos, etc.. Raquetes, patins, tacos de golfe, bastões de baseball, bicicletas Componentes da indústria aeroespacial Ânodo de sacrifício de navios Modelos Exemplos de aplicações das ligas de Magnésio

MAGNÉSIO E LIGAS – APLICAÇÕES Porsche 917 com estrutura tubular em Magnésio redução de 15kg em relação ao Al

LIGAS RESISTENTES À CORROSÃO

LIGAS RESISTENTES À CORROSÃO  Ligas de Alumínio (Al) Ligas de Titânio (Ti) Ligas de Cobre (Cu) Ligas de Níquel (Ni)  

NÍQUEL E SUAS LIGAS

NÍQUEL – BREVE HISTÓRICO “Kupfernickel” – Alemanha séc XVII (Kupfer – “cobre” e nickel – “gênio astucioso, enganador” – porque os mineiros tendo acreditado ter encontrado um minério de cobre se sentiram logrados pela pretensa ação de um duende das minas; Eram usados para colorir vidros (antiguidade); Moedas e armas da antiguidade – ligas de níquel 800 anos a.C. Manuscritos chineses sugerem que o níquel (denominado “cobre branco”) era utilizado no Oriente desde 1400-1700 a.C. Isolado pela primeira vez por Cronstedt em 1751; Amostra de metal consideravelmente pura em 1804 por Richter;

NÍQUEL – CARACTERÍSTICAS Seria a liga metálica de engenharia não fosse o seu custo elevado (boas propriedades mecânicas e tecnológicas, aliado à elevada resist. à corrosão) Estima-se que na crosta terrestre o níquel não exceda os 0,01% 24º metal mais abundante na Terra Ponto de Fusão: 1455 ºC Densidade: 8,91 g/cm3 Estrutura cristalina: (CFC) Ponto de Curie: 353 ºC (é ferromagnético); Comparado ao alumínio seu preço é 5x maior;

NÍQUEL – ASPECTO

Brasil (minério laterítico): NÍQUEL – MINÉRIO Minérios: Sulfetos: sulfetos de cobre e níquel (Canadá) Elevado custo de extração (localização profunda) Silicatos: Silicatos de Ni (Nova Caledonia – Oceania) Laterítico: oxido de ferro, cobalto e magnésio Novas possibilidades de exploração. Brasil (minério laterítico): GO, PA, PI e MG

NÍQUEL – OBTENÇÃO (SULFETADOS) Moagem dos sulfetos de cobre-níquel (triturador) Pirrotita (sulfeto de ferro) é separada magneticamente Tratamento de flotação Forno revérbero (mate – sulfetos de níquel e cobre) Mate é resfriado e triturado Separação magnética material metálico e sulfetos Flotação do sulfeto remanescente (separação dos sulfetos de níquel e cobre) Reprocessamento do sulfeto remanescente

NÍQUEL – CARACTERÍSTICAS MECÂNICAS É dúctil e tenaz Apresenta boa resistência mecânica à frio e à quente (cerca de 500 MPa) Algumas ligas têm resistência a temperaturas sub-zero Elevada resistência mecânica até 1200ºC, mantendo a resistência à corrosão (SUPERLIGAS) Apresenta excelente resistência à corrosão (exceção para atmosferas sulfurosas) No estado puro, apresenta características mecânicas próximas do aço doce Excelente condutividade térmica e elétrica; Excelentes propriedades magnéticas;

NÍQUEL – RERVAS MUNDIAIS

NÍQUEL – CONSUMO

NÍQUEL – APLICAÇÕES Aplicações requerendo elevada resistência à fluência e corrosão a altas temperaturas Galvanoplastia (Revestimento protetor p/ chapas de aço) Usado na indústria química e alimentar Ligas elétricas - ferro/níquel (circuitos magnéticos); Fabricação de moedas em vários países; Fabricação de material bélico; Finamente dividido é usado como catalizador para a hidrogenação de óleos vegetais; Produção de aço inoxidável, juntamente com o cromo;

NÍQUEL – APLICAÇÕES Baterias (níquel-cádmio); Ligas anti-corrosivas e refratárias; Veículos espaciais e submarinos nucleares; Equipamentos para reatores nucleares; Equipamentos para indústria química e petroquímica; Trocadores de calor; Resistência elétrica ; Turbinas refrigeradas à gás; Imãs (Alnico) , …ETC Metalurgia (ligas)

NÍQUEL – APLICAÇÕES Por sua alta resistência a corrosão, as principais aplicações das ligas de níquel mais puras são em equi- pamentos de processamento químico e de alimentos. Turbinas, válvulas, bombas, trocadores de calor

PRINCIPAIS LIGAS DE NÍQUEL Ni - puro Ni-Al (Duraníquel) Ni-Cu (monel) e Ni-Cu-Al (monel K) Ni- Cr-Mo-Al (Inconel) Ni-Mo (Hastelloy) Alnico Ni-Ti (liga com memória de forma)

NÍQUEL COMERCIALMENTE PURO (classe 200) Ligas com 99,5 a 99,99 %Ni Contém como “impureza” principalmente o Co Boa resistência mecânica (aço baixo carbono) aliado à elevada resistência à corrosão Relativa resistência a quente Aplicações Equipamentos para processamento de alimentos, partes elétricas e eletrônicas, materiais para ambientes básicos, partes de foguetes, alvos para sputtering, trocadores de calor em elevada temperatura

LIGAS DE NÍQUEL – DURANÍQUEL (Ni-Al) – Classe 300 Liga de alta resistência mecânica Excelente propriedades elásticas Liga de elevada resistência à corrosão Endurecido por precipitação (Ni3AlTi na matriz) APLICAÇÕES: Palheta de bombas, Molas, Eixos, etc.

LIGAS DE NÍQUEL – MONEL – Classe 400 - Ni 60-70%– Cu 29% - Pode conter Fe, Si, S, C e Mn Tem resit. mecânica superior ao aço médio carbono Apresenta elevada resistência à corrosão Apresenta elevada resitência à altas temperaturas APLICAÇÕES: Indústrias naval, química e petroquímica

LIGAS DE NÍQUEL – MONEL K – Classe K-500 - Cu 29% -Al 3% - 0,6%Ti Possui alta resistência mecânica Apresenta elevada resistência à corrosão Pode ser endurecida por precipitação forma precipitados de (Ni3(Al,Ti)) APLICAÇÕES: Componentes para aviões, molas, eixos,…

LIGAS DE NÍQUEL – INCONEL – Classe 600 Ni – Cr 13% – Mo 4% -Al 7% Boa resistência a meios oxidantese redutores e à carbonetação; Resistência a altas temperaturas Utilizado em lâminas de turbinas; Material de Adição em Soldagem;

LIGAS DE NÍQUEL – HASTELLOY Apresenta elevada resistência à corrosão a altas temperaturas Alta resistência em temperaturas elevadas

LIGAS DE Ni – ALNICOS (Ligas magnéticas (Al-Ni-Co) Liga de: Alumínio, Níquel, Cobalto e Ferro são fabricados através do processo de fundição; Boa resistência à corrosão; utilizados em ambientes com temperatura entre 500 ºC e 550ºC, com excelente estabilidade; Alta indução residual vs. baixa coercitividade é especialmente recomendado em aplicações onde apenas desmagnetização temporária é necessária Aplicações: placas magnéticas, sensores, equipamentos eletropermanentes, levantadores de carga; Permalloy (Ni-Mo-Fe e Ni-Cr-Fe) Perminvar (Fe-Ni-Co e Ni-Co-Mo-Fe)

LIGAS DE NÍQUEL – NITINOL Apresenta memória de forma Alto custo Utilização: indústria aeroespacial biomédica robótica

LIGAS DE NÍQUEL – PROPRIEDADES

LIGAS DE BAIXO PONTO DE FUSÃO

LIGAS DE BAIXO PONTO DE FUSÃO Ligas de Chumbo (Pb) Ligas de Estanho (Sn) Ligas de Zinco (Zn)

CHUMBO E SUAS LIGAS

CHUMBO – CARACTERÍSTICAS Formado pelo elemento químico chumbo – Pb (plumbum) Liga antiga (aprox. 7000 a.C) Algumas tubulações de Pb de 300 a.C. ainda estão em serviço Possui temperatura de fusão de 327 ºC Temperatura de ebulição de 1749 ºC É muito dúctil e pouco tenaz Boa resistência à corrosão em ambientes ácidos Baixa resistência à corrosão em ambientes básicos Média condutibilidade elétrica e térmica Densidade alta (11,3 g/cm3) Facilidade de fundir e formar ligas com outros elementos

CHUMBO – BENEFICIAMENTO Raramente encontrado como metal puro – Geralmente sulfeto Obtido do minério de chumbo – GALENA (PbS) Concentração por flotação Formação do aglomerado Redução dos óxidos Remoção da prata do minério Destilação a vácuo Refino GALENA

CHUMBO – RESERVAS EUA Austrália Canadá Peru México

PRINCIPAIS LIGAS DE CHUMBO Pb-Sn – Chumbo-Estanho Usada em brasagem branda (%Sn=62%) Liga eutética com baixa temperatura de fusão (T=183ºC)

PRINCIPAIS LIGAS DE CHUMBO Pb-Sb – Cumbo-Antimônio Eutético com 11,2%Sb (Temperatura de fusão = 251ºC) 1 a 3% de Sb – revestimento de cabos, laminados (folhas de chumbo), Munição 6 a 12% - placa de baterias e acessórios isolantes de radiação

PRINCIPAIS LIGAS DE CHUMBO Pb-Ag – Cumbo-Prata Com até 2%Ag apresenta exc. resi. à corrosão em meios salinos

CHUMBO – APLICAÇÕES

Baterias chumbo-ácido CHUMBO – APLICAÇÕES Baterias chumbo-ácido

CHUMBO – APLICAÇÕES

CHUMBO – APLICAÇÕES

CHUMBO – APLICAÇÕES

CHUMBO – APLICAÇÕES Fabricação de compostos organoplumbicos para catalizadores Inibidores utilizados em cascos de navio como agentes biocidas Forma um revestimento óxido protetor usado para trabalhar com ácido sulfúrico Pigmentos contendo chumbo... Atualmente tenta-se eliminar o chumbo das aplicações industriais devido à toxidade deste metal

LIGAS DE BAIXO PONTO DE FUSÃO  Ligas de Chumbo (Pb) Ligas de Estanho (Sn) Ligas de Zinco (Zn)

ESTANHO E SUAS LIGAS

ESTANHO E SUAS LIGAS - CARACTERÍSTICAS Metal macio e dúctil em baixas temperaturas e frágil em temperaturas mais altas Um dos metais mais antigos (3500 a.C.) – usado no bronze Transformação alotrópica em 16ºC Temperatura de fusão = 232 ºC Densidade = 7,31 g/cm3 Boa resistência à corrosão, princ. ambiente ácidos, água do mar, etc.. Usado no revestimento de outros metais para evitar corrosão – Folha de flandres

ESTANHO – MINERAL E RESERVAS Cassiterita (SnO2) Ocorrência Sudeste Asiático Malásia Indonésia Tailândia América do Sul Bolívia

LIGAS DE ESTANHO Ligas para mancais Designação pela ASTM B23 Cu % Sn Sb Pb máx. 1 2 3 4 5 4,50 3,50 8,00 3,00 2,00 91,00 89,00 84,00 75,00 65,00 7,50 12,00 15,00 0,35 10,00 18,00 Designação SAE 11 12 5,0/6,5 3,0/4,5 86,00 88,25 6,0/7,5 7,0/8,0 0,50

LIGAS DE ESTANHO - APLICAÇÕES Estanhagem de chapa de aço Folha de flandres - latinhas Decorativo Material de adição para soldagem em baixa temperatura

LIGAS DE ESTANHO - APLICAÇÕES

LIGAS DE BAIXO PONTO DE FUSÃO  Ligas de Chumbo (Pb) Ligas de Estanho (Sn) Ligas de Zinco (Zn) 

ZINCO E SUAS LIGAS

ZINCO E SUAS LIGAS - CARACTERÍSTICAS Temperatura de Fusão = 419,6 ºC Peso específico 7,14 g/cm3 Metal maleável Resistente à corrosão Pouco resistente à tração e fluência (pouco aplicável em material estrutural) Não pode ser endurecido por encruamento devido à baixa temperatura de recristalização Dureza 50 HB Resistente à ação da atmosfera, porém é pouco resistente à ambientes ácidos e básicos.

ZINCO E SUAS LIGAS – MINÉRIO E OCORRÊNCIA Descoberto pelo alemão Andreas Marggraf em 1746 O zinco é o 23º elemento químico mais abuntante O minério de zinco (Esfarelita) é um sulfeto (ZnS) Maiores reservas: EUA, Austrália, China e Cazaquistão Obtenção Extração (sulfeto de zinco) Trituração Flotação Calcinação (Transf. sulfeto em óxido) Redução do óxido (com CO) Blenda ou Esfalerita

ZINCO E SUAS LIGAS – APLICABILIDADE Vantagens Fácil de produzir por fundição em molde permanente; Possibilidade de produzir peças próximas às dimensões finais (“near net shape”) reduzindo o custo de operações posteriores; Pode ser facilmente usinado, dobrado, forjado, cunhado e soldado; Boa resistência à corrosão Resistência mecânica suficiente para muitas aplicações Custo competitivo com o alumínio e cobre para muitas aplicações Desvantagens Não pode ser usado em temperaturas acima de 100ºC; Relativa alta densidade (7,1 g/cm3) comparado com Al e Mg Estrutura HCP limita a deformação plástica do material

ZINCO E SUAS LIGAS – LIGA Zn-Al Usado principalmente para fundição Principal liga estrutural de Zn %Al %Cu %Mg %Ni Liga 3 4,1 0,10 0,04 Liga 5 1,0 0,045 Liga 7 0,015 ZA-8 8,4 0,022 ZA-12 11,0 0,87 ZA-27 27,5 2,2

ZINCO E SUAS LIGAS – LIGA Zn-Al Ligas Zn-4%Al (Alumínio aumenta a fluidez e resist a corr.) Ótima para fundição Facilidade de acabamento final Boas propriedades mecânicas Ausência de corrosão intergranular Ligas ZA Liga ZA-8 – Fundição por injeção (Excelente usinabilidade usado para fins decorativos) Liga ZA-12 – Uso geral, pode ser fundida em molde em areia (primeira opção para substituir ferro fundido, latão ou bronze) Liga ZA-27 – Melhor resistência e alongamento – geralmente fundida em molde em areia. Excelente usinabilidade e boas carac. Anti-atrito.

ZINCO E SUAS LIGAS – APLICAÇÕES Temperatura de fusão baixa e solidificação rápida em fundição por injeção o torna competitivo em relação ao Mg e Al. (20% do uso do Zn) Aplicação de película protetora em metais (50% do uso do Zn) Zincagem a quente (imersão) Zincagem eletrolítica (galvanização) Pintura com tinta contendo elevada percentagem de Zn Como elemento de liga para outros metais (15% do uso do Zn) Latão, Alpacas, Zamak, etc..

ZINCO E SUAS LIGAS – APLICAÇÕES Ânodo de sacrifício Peças produzidas com zinco fundido Peças galvanizadas

LIGAS REFRATÁRIAS

LIGAS REFRATÁRIAS Ligas refratárias são ligas metálicas que apresentam ponto de fusão muito elevado (acima de 2400ºC) Estas ligas apresentam elevada resistência à solicitações químicas e mecânicas em temperaturas elevadas

LIGAS REFRATÁRIAS A ligação interatômica extremamente forte confere à esses metais importantes propriedades e características, além das altas temperaturas de fusão, tais como: Elevada rigidez Alta resistência e dureza (em baixas e altas temp.) Resistência à fluência Resistência à corrosão e oxidação Baixo coeficiente de expansão térmica Estabilidade estrutural

LIGAS REFRATÁRIAS Elementos químicos podem ser adicionados aos metais refratários para melhorar suas propriedades Elementos químicos de metais refratários (p. ex. Mo, W, etc.) podem ser adicionados à outros metais para conferir-lhes características refratárias Por exemplo: Ferramentas de corte, ferros fundidos...

Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) LIGAS REFRATÁRIAS Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) Ligas de Nióbio (Nb) Ligas de Rênio (Re)

MOLIBDÊNIO E SUAS LIGAS

MOLIBDÊNIO E SUAS LIGAS - CARACTERÍSTICAS Temperatura de Fusão = 2623 ºC 6º elemento químico com ponto de fusão mais alto Peso específico 10,2 g/cm3 Elevada dureza e resistência à quente Boa resistência à fluência Boa resistência à corrosão e oxidação Estabilidade térmica Boa condutibilidade térmica e elétrica Metal refratário com custo relativamente baixo Tende a ser frágil em temperatura ambiente

MOLIBDÊNIO E SUAS LIGAS - OCORRÊNCIA Aproximadamente 90% do Mo é usado como elemento de liga Maiores reservas de Mo é na China (43,6%) e EUA (28,3%) e Chile (13,1%) Minério de molibdênio é um sulfeto a molibdenita (MoS2) Molibdenita

LIGAS DE MOLIBDÊNIO Mo puro Liga Molibdênio-Rênio (50/50) Metal refratário de menor custo Liga Molibdênio-Rênio (50/50) Liga de alta resistência Muito cara e disponível somente em tamanhos limitados Folhas para aplicações em alta temperatura (boa soldabilidade) Liga TZM (Titânio, Zircônio, Molibdênio) 99%Mo-0,5%Ti-0,08%Zr Dobro da resistência mecânica do Mo puro Melhor soldabilidade que o Mo puro Custo aprox. 25% maior que o Mo puro

MOLIBDÊNIO E SUAS LIGAS - APLICAÇÕES Por resistir a elevada temperatura sem apresentar significativa expansão e amolecimento o molibdênio é útil para aplicações envolvendo temperaturas extremas Partes de turbinas de aviões; Contatos elétricos; Motores industriais; Filamentos Mo possui também boa resistência à corrosão e boa soldabilidade Como elemento de liga nos aços inoxidáveis, aços ferramentas, ferros fundidos, e superligas para altas temperaturas Dissulfeto de Mo é usado como lubrificante sólido (Molykote®)

MOLIBDÊNIO E SUAS LIGAS - APLICAÇÕES Resistências elétricas Bandejas para forno em liga de Mo (TZM) Elementos de máquina

MOLIBDÊNIO E SUAS LIGAS - APLICAÇÕES Lubrificantes (MoS2)

 Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) LIGAS REFRATÁRIAS  Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) Ligas de Nióbio (Nb) Ligas de Rênio (Re)

TUNGSTÊNIO E SUAS LIGAS

TUNGSTÊNIO E SUAS LIGAS - CARACTERÍSTICAS Metal com o maior ponto de fusão (T = 3420ºC) Metal com a maior resistência mecânica acima de 1650ºC Peso específico 19,25 g/cm3 (aprox. 2x + pesado que o chumbo) Elevada dureza e resistência a quente Boa resistência à fluência Boa resistência à corrosão e oxidação Estabilidade térmica Boa condutibilidade térmica e elétrica Na sua forma pura é relativamente fácil de conformar Metal com o menor coef. de expansão térmica

TUNGSTÊNIO E SUAS LIGAS - OCORRÊNCIA Maiores reservas de W é na China (75%), Bolívia, Áustria, Portugal e Rússia Os principais Minérios de tungstênio são óxidos mistos (FeWO4/MnWO4 – Wolframita e CaWO4 – Scheelita) Wolframita

LIGAS DE TUNGSTÊNIO W puro Ligas Tungstênio-Rênio Metal refratário com maior temperatura de fusão Ligas Tungstênio-Rênio A incorporação de Re ao W confere à liga resistência ao impacto em temperatura ambiente (reduz temperatura de transição dúctil- frágil para -100ºC 3% Re 5% Re 25% Re Liga W com pequenas quantidade de Al, Si, K Aumenta a resistência mecânica em até 4x com relação ao W puro

TUNGSTÊNIO E SUAS LIGAS - APLICAÇÕES Como elemento de liga nos aços, em pequena quantidade tem-se um aumento significativo da tenacidade Filamento de lâmpadas elétricas e filamentos para emissão de elétrons – microscópio eletrônico Componentes para trabalho em temperaturas extremas: válvulas de exaustão em motores de avião, palhetas e discos de turbo, lâminas de motor a jato, etc.. Eletrodos não consumíveis para soldagem (TIG – Tungsten Inert Gas) Termopares (Tipo D – Tungstênio-Rênio) Na forma de carbonetos (cerâmica avançada) usada para ferramentas de corte (Metal duro)

TUNGSTÊNIO E SUAS LIGAS - APLICAÇÕES Eletrodos não consumíveis Ferramentas de corte Filamentos

  Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) LIGAS REFRATÁRIAS  Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) Ligas de Nióbio (Nb) Ligas de Rênio (Re) 

TÂNTALO E SUAS LIGAS

TÂNTALO E SUAS LIGAS - CARACTERÍSTICAS Temperatura de Fusão de 2996 ºC Peso específico de 16,65 g/cm3 Elevada dureza e resistência a quente Boa resistência à fluência Boa resistência à corrosão e oxidação Estabilidade térmica Elevada inércia química (muito resistente à corrosão) Possui dureza e ductilidade Metal de difícil obtenção, portanto, muito caro

TÂNTALO E SUAS LIGAS - OCORRÊNCIA As maiores reservas de Ta se encontram na Austrália, Canadá, Brasil, China e Etiópia. O tântalo é obtido princ. do mineral Tantalita ((Fe, Mn)Ta2O6) Tantalita

LIGAS DE TÂNTALO Ta puro Ligas Ta-W Ligas Ta-Nb Ta – 2,5%W – 0,5%Nb Ta – 10%W (KBI-10) A liga Ta10%W é a mais antiga e mais utilizada (aumenta a dureza a quente) Usada em válvulas para tubulações de gás em alta temperatura, foguetes, indústria química Ligas Ta-Nb Ta – 40%Nb

TÂNTALO E SUAS LIGAS - APLICAÇÕES Utilizado principalmente na indústria eletrônica, na fabricação de capacitores; Equipamentos químicos resistentes à corrosão em elevadas temperaturas (reatores nucleares); Usados na forma de carbonetos na fabricação de ferramentas de corte Componentes em fornos e reatores de alta temperatura; Ligas resistentes ao calor e com boa ductilidade Implantes e instrumentos cirúrgicos

TÂNTALO E SUAS LIGAS - APLICAÇÕES Filamento de lâmpadas Capacitores Porta-amostra para evapo- ração de outros metais Ferramentas de corte

   Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) LIGAS REFRATÁRIAS  Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) Ligas de Nióbio (Nb) Ligas de Rênio (Re)  

NIÓBIO E SUAS LIGAS

NIÓBIO E SUAS LIGAS - CARACTERÍSTICAS Temperatura de Fusão de 2468 ºC Peso específico de 8,55 g/cm3 Elevada dureza e resistência a quente Boa resistência à fluência Boa resistência à corrosão e oxidação Estabilidade térmica Relativa baixa densidade para um metal refratário Facilidade de produção (uso favorecido em relação aos demais) Alta condutibilidade elétrica e térmica

NIÓBIO E SUAS LIGAS - OCORRÊNCIA A maior reservas de Nb do mundo se encontra no Brasil (91%). O principal minério de nióbio é a Columbita [(Fe,Mn)(Nb,Ta)2O6) Columbita

LIGAS DE NIÓBIO Nb puro Ligas Nb com adição de Zr, Hf, Ti, W, Y e Ta É um metal refratário com baixa densidade (8,55 g/cm3) quando comparado ao tungstênio por exemplo (19,25 g/cm3) Ligas Nb com adição de Zr, Hf, Ti, W, Y e Ta Aumentam a dureza da liga Aumentam a resistência a corrosão, mas não evitam a oxidação em temperatura elevada (necessita revestimento de proteção) Ligas com 1%Zr combinam moderada resistência mecânica com excelente comformabilidade e razoável resistência à corrosão Nb-1%Zr Nb-10%Hf-1%Ti-0,75%Zr Nb-10%W-10%Hf-0,15%Y Nb-27,5%Ta-11%W-1%Zr

NIÓBIO E SUAS LIGAS - APLICAÇÕES Utilizado como elemento de liga em aços microligados (HSLA) e em aços inoxidáveis estabilizados; Indústria espacial (liga refratária de baixa densidade) Aplicações nucleares, escudos de radiação; Por ser inerte fisiologicamente é utilizado como jóia, implantes e instrumentos cirúrgicos; Pode ser anodizado adquirindo outras tonalidades Eletrodos para lâmpadas de vapor de sódio devido à resistência à corrosão do vapor metálico Supercondutor em temperaturas criogênicas

NIÓBIO E SUAS LIGAS - APLICAÇÕES Partes da propulsão produzidas com liga de Nb-Ti Brinco – Nióbio em várias tonalidades Moeda com núcleo de Nb anodizado Moedas de Nb anodizado

    Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) LIGAS REFRATÁRIAS  Ligas de Molibdênio (Mo) Ligas de Tungstênio (W) Ligas de Tântalo (Ta) Ligas de Nióbio (Nb) Ligas de Rênio (Re)   

RÊNIO E SUAS LIGAS

RÊNIO E SUAS LIGAS - CARACTERÍSTICAS Temperatura de Fusão de 3183 ºC Peso específico de 21,02 g/cm3 4º elemento químico mais denso (perde para Os, Ir e Pt) Elevada dureza e resistência a quente Boa resistência à fluência Boa resistência à corrosão e oxidação Boa resistência ao impacto Única liga refratária que não forma carbonetos Não apresenta temperatura de transição dúctil-frágil Estima-se que a concentração de Re na crosta terrestre seja de 1 ppb – parte por bilhão (ou seja, 0,0000001%)

RÊNIO E SUAS LIGAS - OCORRÊNCIA O rênio é extraído da molibdenita (minério de Mo) tendo até 0,2% deste metal. Este é um dos motivos da liga ser tão cara (U$1.500,00/kg) Recentemente (1994) foi descoberto um mineral (ReS) Renita mas é um mineral muito raro. Molibdenita

LIGAS DE RÊNIO Re puro Liga de Re É um metal refratário elevada densidade e boa resistência ao impacto em qualquer temperatura (sólido) por não possuir temper. de transição dúctil-frágil. Liga de Re Re-Mo (50/50) – Combina resistência mecânica do Mo e ductilidade do Re

RÊNIO E SUAS LIGAS - APLICAÇÕES Utilizado como elemento de liga para o W e Mo a fim de aumentar ductilidade em elevadas temperaturas. Filamentos em espectrometros de massa Supercondutores (Re-Mo a 10K) Termopares (Re-W) medições de temperatura até 2200ºC Aplicações biomédicas – Pode se tornar radioativo ao ser bombardeado por neutrons Filamento W-Re