A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

AULA 5 Função Logarítmica.

Apresentações semelhantes


Apresentação em tema: "AULA 5 Função Logarítmica."— Transcrição da apresentação:

1 AULA 5 Função Logarítmica

2 LOGARITMOS

3

4

5

6

7

8

9 PROPRIEDADES DOS LOGARITMOS
1) log 𝑎 𝑏.𝑐 = log 𝑎 𝑏 + log 𝑎 𝑐 2) log 𝑎 𝑏 𝑐 = log 𝑎 𝑏 - log 𝑎 𝑐 3) log 𝑎 ba = 𝑎. log 𝑎 𝑏 4) log ax b = 1 𝑥 . log 𝑎 𝑏

10 MUDANÇA DE BASE log 𝑎 𝑏 = log 𝑐 𝑏 log 𝑐 𝑎 Exemplos:
1) log 14 8= log log = 3 log log = log 2 7

11 Exemplos

12

13 FUNÇÃO LOGARÍTMICA f(x) = 𝐥𝐨𝐠 𝒂 𝒙, a é um número real positivo, a ≠ 0 e a ≠ 1 Dom (f): {x ∈𝑅 / x > 0} Im (f) : R

14 Exemplos: Determine o domínio das funções: f(x) = log 10 ( x2 −5x+6) t(x) = log (𝑥−2) (10 −𝑥)

15 GRÁFICO DA FUNÇÃO LOGARÍTMICA
Crescente: b > 1 Decrescente 0 < b < 1

16 Características: O gráfico passa pelo ponto (1, 0).
O gráfico não intersecta o eixo y. O eixo y é assíntota do gráfico. O gráfico não ocupa os segundos e terceiros quadrantes.

17 INEQUAÇÕES LOGARÍTMICAS
Devemos sempre analisar a base! Exemplos: log 2 (x2 +𝑥 −2) ≤2 x2 + x – 2 ≤22 x2 + x – 6 ≤0 S = [–3, –2[ ∪ ]1,2] 2) log 0,5 (x2 + 4x – 5) <−4 x2 + 4x – 5 > 0,5-4 x2 + 4x – 21 > 0 S = ]–∞ , –7[ ∪ ]3,+∞[

18 3) log 0,3 4𝑥 −3 < log 0,3 5 4x – 3 > 5 S = ]2,+ ∞ [ 4) log 10 (x2 −𝑥 −2) > log 10 𝑥 −4 x2 – x – 2 > x – 4 X2 - 2x + 2 > 0 S=] 4,+ ∞[

19 Exemplos: Se log 2 = m e log 3 = n, calcule em função de m e n, o valor de log 2) Resolva a equação: log 2 𝑥 + 𝑙𝑜𝑔 4 𝑥 + 𝑙𝑜𝑔 8 𝑥 + 𝑙𝑜𝑔 16 𝑥 = 25 4 Consideremos os seguintes dados: log 2 = 0,3 e log 3 = 0,48. Nessas condições, qual o valor de log 15 ?

20 4) Se log 7 875 = a, então log 35 245 é igual a?
5) A soma log log log log é igual a? 6) Sejam x,y e z números reais positivos tais que seus logaritmos numa dada base k são números primos satisfazendo: log 𝑘 (𝑥𝑦) =49 log 𝑘 𝑥 𝑧 =44 Então, log 𝑘 𝑥.𝑦.𝑧 é igual a?

21 EXERCÍCIOS SELECIONADOS:
GRUPO 1: 1, 4, 6, 7, 8, 11, 12, 14, 16, 17, 23, 30, 34, 35, 37, 38 GRUPO 2: 1, 2, 3, 4, 5, 6, 10, 20, 24, 26, 32, 34


Carregar ppt "AULA 5 Função Logarítmica."

Apresentações semelhantes


Anúncios Google