Carregar apresentação
A apresentação está carregando. Por favor, espere
1
Capítulo 4 – Função do 2º Grau
Prof. Daniel Keglis Matemática
2
4.1) Definição: Uma função f: R R chama-se função polinomial do 2º grau quando ela é do tipo f(x) = ax2 + bx + c = 0, sendo a, b e c números reais e a 0. Exemplos: f(x) = 2x a = 2 , b = 0 e c =-18 f(x) = - 3x2 + 2x a = -3 , b = 2 e c = 0 f(x) = 2x2 +5x a = 2 e b = 5 e c = -2
3
4.2 Zeros ou raízes da função do 2º grau:
É o valor de x para qual a função polinomial do 2º grau f(x) = ax2 + bx + c = 0, se anula, ou seja, quando f(x) = 0. Exemplo: Seja a função f(x) = x2 - 2x -3 O zero ou raiz da função é determinado igualando a f(x) a zero. Através da fórmula de Bhaskara encontramos as raízes x = 3 e x = -1
4
4.3.1 Gráfico da função do 2º grau:
Veja a representação gráfica da função do 2º grau f(x) = x2 - 2x -3 x y (x,y) -2 5 (-2,5) -1 (-1,0) -3 (0,-3) 1 -4 (1,-4) 2 (2,-3) 3 (3,0) 4 (4,5)
5
4.3.1 Gráfico da função do 2º grau:
6
4.3.2 Concavidades da parábola
O gráfico da função quadrática será sempre uma parábola com concavidades voltadas para cima ou para baixo. Veja: a > a < 0
7
4.3.3 Esboço gráfico da função do 2º grau
No esboço gráfico de uma função quadrática, podem ocorrer os seguintes casos:
8
4.3.3 Esboço gráfico da função do 2º grau
9
4.3.3 Esboço gráfico da função do 2º grau
10
4.3.3 Conclusões (Esboço Gráfico):
Se a função do 2º grau em estudo tiver ∆ > 0, então terá 2 raízes reais e diferentes (x1 x2). Se a função do 2º grau em estudo tiver ∆ = 0, então terá 2 raízes reais e iguais (x1=x2). Se a função do 2º grau em estudo tiver ∆ < 0, então não haverá raízes reais.
11
4.5 Coordenadas do vértice da parábola
O vértice é um ponto notável da parábola muito importante. É ele que determina a inflexão da curva, ou seja, onde ela muda o seu sentido. Usamos as coordenadas Xv e Yv para determinar o vértice da parábola. Essas expressões são obtidas através dos coeficientes da função quadrática.
12
4.6 Valor máximo e valor mínimo da função
Considere as funções do 2º grau cujos os gráficos estão representados abaixo:
13
4.6 Valor máximo e valor mínimo da função
Examinando os gráficos acima, podemos concluir que: Se a > 0, o vértice é o ponto da parábola que tem ordenada mínima. Nesse caso, o vértice é chamado de ponto mínimo (Valor Mínimo). Se a < 0, o vértice é o ponto da parábola que tem ordenada máxima. Nesse caso, o vértice é chamado de ponto máximo (Valor Máximo).
14
4.7 Pontos Notáveis da Parábola
Para traçar o esboço gráfico de uma parábola, com praticidade, usamos alguns pontos notáveis da parábola. Ponto de intersecção da parábola com o eixo x (Raízes da função do 2º grau) Ponto de intersecção da parábola com o eixo y. (Ponto 0,c) O vértice da parábola. (Xv e Yv).
15
4.8 Conclusões: Observamos que o gráfico de uma função do 2º grau é sempre uma parábola. Quando a > 0 a parábola tem concavidade voltada para cima, a < 0 a parábola tem concavidade voltada para baixo. O coeficiente c é a ordenada do ponto (0,c) onde a parábola intercepta o eixo y. O zeros ou raízes da função são o pontos onde a parábola intercepta o eixo x, ou seja, onde f(x) = 0.
16
4.9 Estudo do Sinal da função do 2º grau
O estudo do sinal de uma função do 2º grau recai sempre em um dos casos a seguir: Para a > 0 ∆ > ∆ = ∆ < 0
17
4.9 Estudo do Sinal da função do 2º grau
Para a < 0 ∆ > ∆ = ∆ < 0
18
4.9 Aplicações: Podemos observar nas figuras abaixo situações de aplicação deste tipo de função:
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.