A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Metabolismo Microbiano

Apresentações semelhantes


Apresentação em tema: "Metabolismo Microbiano"— Transcrição da apresentação:

1 Metabolismo Microbiano
Produção de energia e biossíntese

2 Objetivos Catabolismo = quebra da estrutura das moléculas
Anabolismo = reconstrução das estruturas moleculares Reações exergônicas – liberam E Reações endergônicas – requerem E Composto de transferência de E mais importante (ATP) Formas de produção de energia Fosforilação em nível de substrato, fosforilação oxidativa e fotofosforilação Processo de força próton-motiva Quimiotrofia e fototrofia Glicólise Respiração e fermentação Biossíntese de moléculas e compostos

3 1. Introdução Metabolismo: São de 2 tipos:
toda a atividade química realizada por um organismo e seu maquinário. São de 2 tipos: aquelas que liberam E = exergônicas - catabólicas aquelas que utilizam E = endergônicas - anabólicas E = capacidade de realizar trabalho química luminosa E

4 ∆G = + ∆G = -

5 2. Produção de Energia (E)
Requerimentos de energia: Componentes celulares: parede, membrana, etc. Síntese de enzimas, ácidos nucléicos, polis-sacarídeos, fosfolipídios, etc. Reparos e manutenção da célula Crescimento e multiplicação Acumulação de nutrientes e excreção de produtos indesejáveis Mobilidade

6 Degradação Síntese Crescimento celular, reprodução, manutenção
Sistema de armazenamento e transferência de E Componentes celulares como proteínas (enzimas), DNA, RNA, carboidratos, lipídeos, etc. Produtos da degradação servem como unidades para a produção de compostos celulares Síntese Compostos e estruturas Degradação Quebra de substratos ou nutrientes E liberada E requerida Crescimento celular, reprodução, manutenção e movimento

7 Tipos de energia Energia química – energia contida em ligações químicas das moléculas Energia radiante (energia da luz) – deve ser convertida em energia química

8 (utilizam substâncias
Classificação dos microrganismos de acordo com a fonte de energia e carbono Quimiotróficos (utilizam substâncias químicas como fonte de energia) Quimiolitotróficos C= CO2 Quimiorganotróficos C=orgânico

9 Classificação dos microrganismos de acordo com a fonte de energia e carbono

10 Moléculas inorgânicas
Classificação dos microrganismos de acordo com a fonte de energia e carbono Tipo fisiológico Fonte de Energia Fonte de Carbono Foto Luz Quimio Química Organotrófico/heterotrófico Moléculas orgânicas Autotrófico/litotrófico Moléculas inorgânicas Fotoautotrófico = plantas, cianobactérias, algas verdes Fotoorganotrófico/hetero = bactérias púrpuras, exceto as abaixo Fotolitotróficas = bactérias púrpuras metabolizantes do S Quimioautotrófico = Archaea metanogênicas Quimiorganotrófico/hetero = maioria bactérias e fungos Quimiolitotrófico = bactérias nitrificadoras

11 Enzimas Catalisadores das reações
Aumentam as velocidades de reação de 108 a 1020 vezes Tem sítios ativos de ligação do substrato Podem conter outras moléculas acopladas Grupos prostéticos – grupo heme dos citocromos é um exemplo Coenzimas – derivadas de vitaminas (NAD+/NADH) Terminação ase ao seu substrato Celulase: degradam celulose Glicose-oxidase: catalisa a oxidação da glicose Ribonuclease: decompõe acido ribonucleico Lisozima: cliva o peptideoglicano

12 Catalise e enzimas Reação exergônica

13 COMPLEXO ENZIMA-SUBSTRATO

14 Compostos ricos em energia: armazenamento e transferência de energia (imediata)
ATP = adenosina trifosfato ADP = adenosina difosfato Fosfoenolpiruvato Glicose-6-fosfato Coenzimas: Acetil CoA, NAD, NADH, NADPH

15 Armazenamento de energia
Ligacoes tioéster (Madigan et al., 2010)

16 Compostos ricos em energia: armazenamento e transferência de energia (a longo prazo)
Procariotos: Glicogenio Poli-β-hidroxibutirato Poli-idroxialcanoatos S (elementar) Eucariotos Poliglicose na forma de amido Lipídeos na forma de gorduras

17 4. Geração de ATP por microrganismos
Reações exergônicas Reações endergônicas acoplamento - ΔGº' + ΔGº' ATP ΔG = variação de energia durante as reações

18 4. Geração de ATP por microrganismos
Ausência de aceptores exógenos de elétrons O2 ou outro composto como aceptor exógeno de elétrons Menos E Mais E Fermentação Respiração Síntese de ATP acoplada a reações de óxido-redução Oxidação = perda de e- (liberam energia) Redução = ganho de e- (requerem energia)

19 4. Geração de ATP por microrganismos Fermentação
Fosforilação = adição de um grupo fosfato a um composto Fosforilação em nível de substrato

20 ao ADP para produzir ATP
Ligações de fosfato de alta energia e essa energia é transferida diretamente ao ADP para produzir ATP (Madigan et al., 2004)

21 Fosforilação a nível de substrato
GLICÓLISE Glicose acido 2-fosfoglicérico acido fosfoenolpirúvico acido pirúvico

22 4. Geração de ATP por microrganismos Respiração
Fosforilação oxidativa Fotofosforilação

23 Fosforilação oxidativa
Todas as reações de oxidação liberam energia (sistema de transporte de elétrons) A energia é armazenada temporariamente em força proton-motiva A força proton-motiva fornece energia para a síntese de ATP a partir do ADP sistema O/R: doador  (O/R)1  (O/R)2  (O/R)3  (O/R)4  aceptor nutriente composto oxidado

24 Fosforilação oxidativa – força proton-motiva
Sistema de transporte de elétrons: Procarióticos = membrana citoplasmática Eucarióticos = membrana interna da mitocôndria

25 Exterior da célula Citoplasma

26

27

28 ATPase

29 4. Geração de ATP por microrganismos Respiração
Fosforilação oxidativa Fotofosforilação

30 4. Geração de ATP por microrganismos Respiração
Luz como fonte de energia Luz produz força proton-motiva Força proton-motiva promove síntese de ATP Onde faz e quem faz: Cianobactérias, algas, plantas verdes (fototróficos) Nos tilacóides no citoplasma ou nos cloroplastos, devido a presença de clorofila

31 4. Geração de ATP por microrganismos
Como faz: Além de fotofosforilação também fixam CO2 Este processo requer 2 componentes: ADP (fonte de energia) NADPH2 (doador de e- para a fixação do CO2) Depende da atividade de 2 estruturas: Fotossistema I (PS I) Fotossistema II (PS II)

32 Fotofosforilação CL = clorofila CR = centros de reação
(Madigan et al., 2004) CL = clorofila CR = centros de reação Bph = bacteriofeofitina Q = quinona Fe-S = proteína Fe-S bc1 = complexo citocromo bc1 C2 = citocromo c2 Organização do complexos protéicos na membrana fotossintética de uma bactéria púrpura fototrófica. O gradiente de prótons gerado pela luz é utilizado na síntese de ATP, catalisada pela ATP sintase (ATPase).

33 Fotofosforilação Estroma

34 5. Vias metabólicas de produção de energia
Vias importantes Glicólise Regeneração do NAD+ Fermentação Respiração: aeróbia anaeróbia

35 Glicólise Degradação anaeróbica da glicose a ácido pirúvico por uma
sequência de reações catalizadas enzimaticamente (também chamada de via Embden-Meyerhoff )

36 Produção líquida de 2 ATP

37 Regeneração do NAD Através de 2 métodos Fermentação Respiração:
aeróbica anaeróbica

38 Fermentação Ausência de O2
Reações de oxidação e redução de um composto orgânico Baixo potencial de energia (processo pouco eficiente) Ocorre fosforilação em nível de substrato Ocorre no citosol

39 Este é o processo básico na indústria de produção de bebidas alcoólicas

40 Produtos da fermentação
Espécie microbiana Principal produto da fermentação Acetivibrio cellulolyticus Ácido acético Actinomyces bovis Ácidos acético, fórmico, láctico, etc. Clostridium acetobutylicum Acetona, butanol, etanol, ácido fórmico, etc. Enterobacter aerogenes Etanol, ácido fórmico, CO2, etc. Escherichia coli Etanol, ácidos láctico, acético, fórmico, succínico, etc. Lactobacillus brevis Etanol, glicerol, CO2, ácidos láctico, acético, etc. Streptococcus lactis Ácido láctico Succinimonas amylolytica Ácidos acético e succínico

41 Respiração Processo de regeneração do NAD onde o NADH2 é o doador de e- para o sistema de transporte de e- Se o O2 é o aceptor final de e-, então respiração aeróbica Se outra molécula (NO3-, SO4--) for o aceptor final de e-, então respiração anaeróbica Vantagem sobre a fermentação: além da regeneração de NAD há produção de força proton-motiva para síntese adicional de ATP

42 5. Respiração aeróbica Ciclo de Krebs

43 Produção de ATP em crescimento aeróbico na presença da glicose
Produção liquida = 38 ATP

44 Respiração anaeróbia aceptor final de elétrons diferente do O2
oxidação de substratos orgânicos ou inorgânicos: C6H12O NO3-  6CO2 + 6H2O + 12NO2- 2 lactato + SO4= + 4H+  2 acetato + 2CO2 + S= + H2O Quantidade de energia produzida é menor

45 Biossíntese Energia para síntese de compostos celulares: ácidos nucléicos (DNA, RNA), substâncias nitrogenadas (aa, enzimas, proteínas), carboidratos (peptidoglicano), lipídeos, etc. ATP para processos como divisão celular, mobilidade, transporte ativo de nutrientes, etc.

46

47 Utilização de energia

48 Biossíntese de compostos nitrogenados
N inorgânico (NH3+) Aminoácidos Arranjo de aminoácidos Proteínas/enzimas Purinas e pirimidinas Nucleotídeos Ácidos nucléicos (DNA, RNA)

49 Biossíntese de aa e proteínas
Ativação química dos aminoácidos via junção com ATP (gera AMP + pirofosfato) Inibição por feedback Proteínas sintetizadas através do código genético Síntese de RNA é pré-requisito para a síntese de proteínas

50 Fornecimento de precursores de aminoácidos
(Madigan et al., 2004)

51 Biossíntese de nucleotídeos e ácidos nucléicos
Nucleotídeo = base nitrogenada-pentose-fosfato ribose = ribonucleotídeos (RNA) desoxirribose = desoxirribonucleotídeos (DNA) Ativação dos nucleotídeos (ATP) Síntese de ácidos nucléicos a partir de nucleotídeos ativados

52 Biossíntese de nucleotídeos e ácidos nucléicos
(Madigan et al., 2004)

53 Biossíntese de carboidratos
CO2 Triose Pentoses e hexoses Nucleotídeos Polissacarídeos (peptidoglicano, celulose, amido, etc.) RNA e DNA

54 Biossíntese de ácidos graxos
Glicose Glicólise Ácido pirúvico Acetil CoA e Malonil CoA Ácidos graxos de cadeia longa Glicerol fosfato Fosfolipídios

55 Outras utilizações de energia
Transporte Motilidade Reparos Produção de estruturas de resistência (endosporos)


Carregar ppt "Metabolismo Microbiano"

Apresentações semelhantes


Anúncios Google