A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

COMPÓSITOS Formados por dois materiais a nível macroscópico

Apresentações semelhantes


Apresentação em tema: "COMPÓSITOS Formados por dois materiais a nível macroscópico"— Transcrição da apresentação:

1 COMPÓSITOS Formados por dois materiais a nível macroscópico
Enorme gama de propriedades Excelentes rigidez e resistência específicas Fibras e matriz cerâmicas resistem a altas temperaturas

2 TIPOS DE MATERIAIS COMPÓSITOS
REFORÇADOS C/PARTÍCULAS REFORÇADOS C/ FIBRAS COMPÓSITOS LAMINARES COMPÓSITOS NATURAIS Concreto Asfalto Cermet Fibras de carbono, Kevlar, vidro, etc Matriz de epoxy, poliéster, PEEK, etc Laminados de fibras e resina Sandwich Madeira

3 A Fase Fibra PROPRIEDADES DAS FIBRAS
Devem usar-se fibras com grandes resistência e rigidez específicas.

4 CONTROLE DE PROPRIEDADES
PROPRIEDADES DA MATRIZ Matrizes poliméricas têm em geral baixa resistência e baixo ponto de fusão Matrizes metálicas têm maior resistência e maior ponto de fusão, mas são mais pesadas Podem ser usadas matrizes cerâmicas para resistência a temperaturas extremamente elevadas, perdendo-se tenacidade LIGAÇÃO FIBRA-MATRIZ Se não houver boa aderência da matriz à fibra, não há distribuição de esforços eficiente O coeficiente de expansão térmica deve ser muito semelhante entre fibras e matriz FRAÇÃO EM VOLUME DE FIBRAS Quanto maior for este valor, maior será a resistência do compósito, até um valor limite de 80%, a partir do qual deixa de haver “molhagem” total das fibras pela matriz.

5 Fraca aderência entre as fibras e a matriz
Excelente aderência entre fibras e matriz

6 COMPÓSITOS AVANÇADOS COMPÓSITOS DE MATRIZ METÁLICA
Podem ser usados a temperaturas superiores em relação aos compósitos de matriz polimérica Possuem maior resistência mecânica que o metal da matriz não reforçado Atenua-se a vantagem das maiores resistência e rigidez específicas

7 COMPÓSITOS AVANÇADOS COMPÓSITOS CERÂMICA-CERÂMICA
Possuem uma maior tenacidade à fratura em relação ao cerâmico não reforçado; Usados apenas em aplicações de elevada temperatura (+ 1000ºC)

8 Comparação entre as resistências específicas de materiais compósitos e não compósitos.

9 Compósitos Reforçados com Partículas
A resistência mecânica é fortemente dependente da ligação entre as partículas e a matriz, sendo por isso difícil de prever teoricamente ! Ec (u) = EmVm + EpVp Ec (l) = EmEp/(VmEp + VpEm) Limite superior Módulo de elasticidade deve estar entre os limites superior e inferior Limite inferior

10 Compósitos Reforçados com Fibras
Faz-se uso de compósitos reforçados com fibras em projetos cujos objetivos incluem uma alta relação resistência/peso. Influência do comprimento da fibra: quando uma tensão é aplicada em um compósito deste tipo a ligação matriz-fibra cessa nas extremidades da fibra. Comprimento crítico: comprimento de fibra mínimo, necessário para que haja um efetivo aumento da resistência do compósito. Lc = σfd/2tc

11 Compósitos Reforçados com Fibras
Perfis tensão-posição em função do comprimento da fibra (l) e o seu comprimento crítico (lc):

12 Alguns arranjos típicos de fibras em cada camada de compósito
Fibras unidirecionais contínuas Fibras descontínuas orientadas de modo aleatório Fibras unidirecionais tecidas ortogonalmente

13 Comportamento Elástico em Função da Direção de Carregamento
ORIENTAÇÃO DAS FIBRAS A resistência será máxima quando as fibras estiverem orientadas com o esforço (sendo mínima na direção perpendicular) Variação de propriedades com a orientação das fibras para uma liga de Titânio reforçada com fibras de Boro

14 Comportamento Elástico em Função da Direção de Carregamento
Para uma carga alinhada na direção do carregamento: Ecl = EmVm + EfVf módulo de elasticidade do compósito Ecl = Em (1-Vf) + EfVf Ff/Fm = EfVf/EmVm relação entre a carga suportada pelas fibras e pela matriz Para uma carga alinhada na direção transversal ao carregamento: 1/Ecl = Vm/Em + Vf/Ef módulo de elasticidade do compósito Ecl = Em Ef / VmEf + VfEm = EmEf/ (1-Vf)+ VfEm Ff/Fm = EfVf/EmVm relação entre a carga suportada pelas fibras e pela matriz Regra das misturas: usada quando para compósitos com fibras descontínuas e aleatoriamente orientadas: Ecd = Vm/Em + KVf/Ef

15 Resistência longitudinal do compósito
Para εf < εm em compósitos com fibras contínuas e alinhadas: σm = tensão na matriz no momento em que ocorre a falha da σcl = σm (1+Vf) + σfVf fibra; σf = limite de resistência à tração da fibra. Para compósitos com fibras descontínuas e alinhadas: Para l > lc : σcd = σfVf (1- lc/2l) + σm(1-Vf) Para l < lc : σcd = lcVf/d + σm(1-Vf)

16 MATRIZ DO COMPÓSITO Transmite os esforços mecânicos aos reforços (fibras), mantendo-os em posição, e contribuindo com alguma ductilidade (em geral pequena) para o compósito. REFORÇO DO COMPÓSITO Elemento que suporta os esforços no compósito. É, em geral, de elevadas resistência e rigidez.

17 Compósitos com matriz polimérica
Aderência ruim entre a matriz e as fibras; Boa aderência entre a matriz e as fibras


Carregar ppt "COMPÓSITOS Formados por dois materiais a nível macroscópico"

Apresentações semelhantes


Anúncios Google