A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Conceitos Fundamentais

Apresentações semelhantes


Apresentação em tema: "Conceitos Fundamentais"— Transcrição da apresentação:

1 Conceitos Fundamentais
CF Aula

2 Notação Rotacional de um campo vectorial Vector Versor Produto interno
Produto externo Tensor Nabla Gradiente de um campo escalar Divergência de um campo vectorial Notação CF Aula

3 Equações de Maxwell Leis do electromagnetismo são regidas pelas equações de Maxwell. Eqs. Maxwell baseadas em trabalhos de Faraday, Gauss, Ampére, etc. (sec. XIX). Força de Lorentz: Campos vectoriais (campo eléctrico) e (indução magnética) grandezas fundamentais de campo electromagnético. Podem ser determinadas por experimentação. Campos vectoriais auxiliares: deslocamento eléctrico , campo magnetico Em espaço livre: Permeabilidade magnética , permitividade CF Aula

4 Lei de Faraday A circulação de ao longo do contorno fechado Гf = - variação temporal do fluxo da indução magnetica através de A. A CF Aula

5 Teorema de Helmholtz (cálculo vectorial)
Teorema de Stokes (cálculo vectorial) Circulação (integral de linha) de um campo vectorial ao longo de uma linha fechada Гf = fluxo do rotacional de através de A. Teorema de Helmholtz (cálculo vectorial) Um campo vectorial fica completamente definido quando forem conhecidos e em todos os pontos do espaço. CF Aula

6 Teorema da divergência (cálculo vectorial)
Lei de Gauss O fluxo total de que sai dum volume V limitado por Sf é igual à carga eléctrica total contida nesse volume. Teorema da divergência (cálculo vectorial) CF Aula

7 Campo magnético Lei de Ampére
A fonte que cria a circulação (ou rotacional) do campo magnético é Lei de Ampére Grande contribuição de Maxwell: adicionar o termo Eqs. compatíveis com o principio da conservação da carga e permitiu prever a propagação de ondas electromagnéticas (~20 anos antes de Hertz ter verificado as previsões teóricas). CF Aula

8 Teorema de Stokes do cálculo vectorial
Termo Teorema de Stokes do cálculo vectorial Divergência de Não foram encontrados até agora cargas magnéticas Teorema da divergência CF Aula

9 traduz um fluxo de cargas eléctricas livres. Como a carga se conserva
Termo traduz um fluxo de cargas eléctricas livres. Como a carga se conserva Eq. da continuidade Teorema da divergência CF Aula

10 CF Aula

11 Eqs. de Maxwell Sabendo  e tem-se 12 incógnitas e 8 eqs.
Eqs. adicionais resultam das relações entre campos impostas pelas características do meio, relações Constitutivas. CF Aula

12 Temporalmente dispersivos Espacialmente dispersivos
Relações constitutivas A resposta do meio a um estímulo electromagnético depende das suas características. Propriedades dos meios Homogéneos Lineares Isótropos Anisotropos Temporalmente dispersivos Espacialmente dispersivos Meios simples: com comportamento linear, isótropos e sem dispersão espacial. CF Aula

13 Comportamento dieléctrico
Meios materiais Comportamento dieléctrico Resposta do meio a um campo electromagnético estático e uniforme é descrita em termos de momentos dipolares eléctricos induzidos. Campo eléctrico cria momento dipolar eléctrico. - vector polarização eléctrica CF Aula

14 Meios materiais Comportamento magnético
Materiais não ferromagnéticos: Quando se aplica um campo magnético são induzidas pequenas correntes microscópicas que se opõem nos seus efeitos magnéticos às variações do campo aplicado. Comportamento diamagnético,momentos magnéticos em oposição ao campo magnético. Comportamento paramagnético, há a possibilidade de alinhar os momentos magnéticos atómicos individuais e o campo magnético intensifica-se. Materiais ferromagnéticos: os momentos magnéticos induzidos são muito mais intensos do que nos materiais com comportamento magnético ordinário. CF Aula

15 Magnetização Correntes microscópicas induzidas (Correntes Amperianas).
Magnetização momento dipolar magnético por unidade de volume. A densidade de corrente associada às correntes microscópicas é dada por e tem-se CF Aula

16 Descrição dos comportamentos dieléctrico e magnético
Em termos de momentos dipolares induzidos só é rigorosamente válida no caso dos campos estáticos uniformes (separação completa de efeitos eléctricos e magnéticos). Regimes variáveis no tempo Meios isotrópicos simples sem dispersão espacial  relações entre e e entre e descritas cada uma por uma convolução temporal. No domínio da frequência significa um relacionamento multiplicativo entre as transformadas de Fourier de e e de e . CF Aula

17 Equações de Maxwell em Meios Materiais
Num meio dieléctrico simples, para além da carga livre  existe também carga de polarização p, que tem origem nos dipolos eléctricos induzidos provocados pelo campo eléctrico aplicado (separação de cargas negativas e positivas). Recorrendo ao vector de polarização constituído pela densidade volúmica do momento dos dipolos eléctricos induzidos no meio. A introdução de tem a vantagem de invocar apenas a densidade de carga livre. CF Aula

18 Corrente de polarização
Corrente livre Corrente Amperiana Corrente de polarização Corrente deslocamento de vácuo O rotacional da indução magnética (circulação ao longo de qualquer caminho fechado) é determinado pela densidade de corrente total. CF Aula

19 Equações de Maxwell em termos de D e H
A introdução dos campos e facilita a escrita das equações de Maxwell mas torna necessário arranjar um modelo para descrever os meios. CF Aula

20 Ondas Electromagnéticas
A descrição de uma estrutura ondulatória envolve coordenadas espaciais e a coordenada temporal. Nem todas as funções f(x,y,z,t) são ondas. Ondas Planas O lugar geométrico dos pontos em que os valores das grandezas ondulatórias são constantes, são planos. As ondas planas são muito importantes porque: A grande distância das fontes as ondas esféricas e cilíndricas podem ser localmente aproximadas por ondas planas Qualquer tipo de onda pode ser sintetizado (via integral de Fourier em vectores de onda) à custa de ondas planas elementares. CF Aula

21 Meio homogéneo, isótropo e sem fontes ou espaço livre.
Equações de Onda Meio homogéneo, isótropo e sem fontes ou espaço livre. Equações de onda CF Aula

22 Propagação de Ondas Planas e Uniformes
Admitamos (para simplificar) que só dependem de z. Todas as funções acima representam movimento ondulatório CF Aula

23 Uma onda não é necessariamente um fenómeno repetitivo no tempo.
O que é uma onda? É um fenómeno físico que ocorre num local num dado instante e é reproduzido noutros lugares em instantes posteriores, sendo o atraso proporcional à distância de cada local à primeira posição. Uma onda não é necessariamente um fenómeno repetitivo no tempo. (Ex: Tsunami). CF Aula

24 Se houver apenas onda incidente: E = f (z – ct)
CF Aula

25 Variação Temporal Harmónica
Os geradores produzem tensões e correntes, e portantos campos eléctrico e magnético que variam sinusoidalmente no tempo. Qualquer variação periódica pode ser analisada em termos de variações sinusoidais com frequências que reproduzem o conteúdo espectral do estímulo electromagnético. CF Aula

26 CF Aula


Carregar ppt "Conceitos Fundamentais"

Apresentações semelhantes


Anúncios Google