A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Infiltração e Água no Solo

Apresentações semelhantes


Apresentação em tema: "Infiltração e Água no Solo"— Transcrição da apresentação:

1 Infiltração e Água no Solo
Capítulo 06b MMC44 - Modelagem e Simulação Computacional em Recursos Hídricos Hidrologia Infiltração e Água no Solo Prof. Benedito C. Silva IRN / UNIFEI Adaptado de Walter Collischonn

2 Água do solo x água subterrânea
Infiltração Poros ocupados por ar e água (água do solo) Zona não saturada Percolação Poros ocupados por água (água subterrânea) Zona saturada Camada impermeável

3 água subterrânea Água do solo x

4 Composição dos solos O solo é uma mistura de materiais sólidos, líquidos e gasosos. Na mistura também encontram-se muitos organismos vivos (bactérias, fungos, raízes, insetos, vermes)

5 Composição dos solos Composição do solo

6 Parte sólida do solo Normalmente analisada do ponto de vista do diâmetro das partículas que compõe o solo: Diâmetro (mm) Classe 0,0002 a 0,002 Argila 0,002 a 0,02 Silte 0,02 a 0,2 Areia fina 0,2 a 2,0 Areia grossa

7 Textura do solo

8 Textura do solo Sand Loamy sand Sandy loam Silt loam Loam
Textura (português) Textura (inglês)  Arenosa Sand areia franca Loamy sand         franco arenosa Sandy loam           franco siltosa Silt loam franca Loam             franco argilo arenosa Sandy clay loam   franco argilo siltosa Silty clay loam franco argilosa Clay loam         argilo arenosa Sandy clay         argilo siltosa Silty clay             argila Clay                 Siltosa Silt

9 Armazenamento de água no solo
Conceitos importantes para entender o armazenamento de água no solo: Porosidade Capilaridade Retenção de água no solo Potencial mátrico

10 Porosidade Volume total do solo = volume de sólidos + volume de poros
Porosidade = volume de poros / volume total

11 Porosidade Valores típicos: Areia: 0,37 a 0,50 Argila: 0,43 a 0,52

12 Armazenamento Conteúdo de água no solo em volume
Na situação em que todos os poros do solo estão ocupados pela água o solo é denominado saturado. Neste caso, o valor do conteúdo de água no solo é máximo, e q é igual a a. Portanto, o máximo conteúdo de água no solo é igual à porosidade.

13 Solo seco Na condição de solo completamente seco todos os poros estariam ocupados pelo ar, e o valor de q seria zero. Entretanto, isto raramente acontece, porque a água é fortemente atraída pelas partículas e pelos poros dos solos, devido as forças de adsorção e capilaridade.

14 Retenção de umidade no solo
O solo pode ser entendido de uma forma simplificada como uma esponja, ou papel de filtro, que tem capacidade de reter a água. Há duas forças principais que atuam no sentido de reter a água nos poros dos solos: as forças capilares as forças de adsorção

15 Capilaridade As forças capilares ocorrem como consequência da tensão superficial da água interagindo com as paredes dos poros. Tubos capilares exercem sucção por causa da tensão superficial Poros do solo podem exercer o mesmo efeito Quanto menor o diâmetro dos poros, maior é o efeito Granulometria mais fina = poros menores = mais capilaridade

16 Adsorção As forças de adsorção estão relacionadas a cargas eletrostáticas atuando entre as partículas do solo e as moléculas de água, ou de íons presentes na água, e resultam na manutenção de um filme muito fino de água sobre as partículas do solo.

17 Tensão mátrica As duas forças (capilar e adsorção) atuam no sentido de reter a água no solo e é praticamente impossível avaliar separadamente cada uma delas. Assim, normalmente se refere à força de retenção de água no solo como a força mátrica, ou potencial mátrico de um solo. Tem unidades de pressão (N/m2)

18 Medição de tensão Tensiômetro Bulbo cerâmico

19 Curva de retenção de umidade
Para uma amostra de solo o potencial mátrico normalmente varia com o conteúdo de água do solo, e esta relação é, normalmente, determinada de forma experimental. Solos mais secos apresentam um potencial mátrico maior (exercem maior sucção sobre a água) do que solos mais úmidos. A função que relaciona as duas variáveis é a curva de retenção de umidade, ou curva de retenção de água no solo

20 Umidade do solo Umidade do solo varia ao longo do tempo.
Para retirar a umidade do solo: Por gravidade Por sucção Hornberger et al., 1998 – Elements of physical hydrology

21 Umidade do solo Saturação: condição em que todos os poros estão ocupados por água Capacidade de campo: Conteúdo de umidade no solo sujeito à força da gravidade Ponto de murcha permanente: umidade do solo para a qual as plantas não conseguem mais retirar água e morrem

22 Condutividade de água em
condição de saturação Movimento da água em meios porosos

23 Experimento de Darcy

24 Experimento de Darcy K = propriedade do material = condutividade hidráulica saturada

25 Fluxo da água em meios porosos saturados
Q = fluxo de água (m3/s) A = área (m2) H = carga (m) L = distância (m) K = condutividade hidráulica (m/s)

26 Condutividade de água em
condição de saturação Solo arenoso: 23,5 cm/hora Solo siltoso: 1,32 cm/hora Solo argiloso: 0,06 cm/hora

27 Movimento no meio não saturado
A equação de Darcy foi desenvolvida para fluxos de água em meios porosos saturados. Nos solos, entretanto, a situação mais comum é que o meio não está saturado. Neste caso, a condutividade hidráulica é uma função do conteúdo de água no solo. Além disso, a carga hidráulica deve ser expressa como uma combinação do potencial gravitacional e potencial mátrico. A equação de Darcy com estas adaptações é, por vezes, denominada equação de Darcy-Buckingham. saturado não saturado

28 Movimento no meio não saturado
A condutividade hidráulica em condições não saturadas é menor do que a condutividade hidráulica saturada

29 A equação de Richards Combinando a equação de Darcy
Com a equação da continuidade para um pequeno volume de solo: Pode-se chegar à equação de Richards: Que descreve o fluxo da água em meios porosos não saturados.

30 Equação de Richards Fortemente não linear
Soluções analíticas apenas em casos simplificados Normalmente são usadas soluções numéricas

31 Exemplo solução numérica da equação de Richards
Baseado em trabalho de Rodrigo C. D. Paiva Coluna de solo de 2 m Cond Contorno base = saturado Cond. Contorno topo = fluxo de infiltração Evapotranspiração nos primeiros 50 cm Textura argilosa

32

33

34

35

36

37 Valores negativos = fluxo ascendente

38 Valores negativos = fluxo ascendente

39 Valores negativos = fluxo ascendente

40 Equação de Richards Muito interessante
Difícil solução, mesmo usando métodos numéricos Solos reais não são meios porosos perfeitos Macro-porosidades, heterogeneidade das camadas, etc.

41 Balanço hídrico no solo
V = variação de volume de água armazenada no solo; P = precipitação; Q = escoamento superficial; G = percolação; ET = evapotranspiração V

42 Exercício Considere uma camada de solo de 1 m de profundidade cujo conteúdo de umidade é 35% na capacidade de campo e de 12% na condição de ponto de murcha permanente. Quantos dias a umidade do solo poderia sustentar a evapotranspiração constante de 7 mm por dia de uma determinada cultura?

43 Infiltração de água no solo
Uma chuva que atinge um solo inicialmente seco será inicialmente absorvida totalmente pelo solo, enquanto o solo apresenta muitos poros vazios (com ar). Nesta condição, o potencial mátrico do solo é muito alto, e a água da chuva é absorvida muito rapidamente. À medida que os poros vão sendo preenchidos, a infiltração tende a diminuir, estando limitada pela capacidade do solo de transferir a água para as camadas mais profundas.

44 Taxa de infiltração e capacidade de infiltração
A taxa de infiltração é a quantidade de água que penetra no solo ao longo do tempo. Normalmente a taxa de infiltração é expressa em unidades de mm.hora-1. A máxima taxa de infiltração que um solo pode ter é definida como sua capacidade de infiltração. A capacidade de infiltração varia ao longo do tempo.

45 Medição da capacidade de Infiltração
Anéis concêntricos Desenho

46 Capacidade de infiltração
A capacidade de infiltração de água no solo varia de acordo com a umidade do solo. Em solos secos a capacidade de infiltração é, normalmente, bastante alta. À medida em que o solo vai ficando úmido, no entanto, a capacidade de infiltração diminui.

47 Modelo de capacidade de infiltração de Horton
fo = 50 mm/hora fc = 4 mm/hora

48 Equação de Horton f = taxa de infiltração (mm/hora)
fc = taxa de infiltração em condição de saturação (mm/hora) fo = taxa de infiltração inicial (mm/hora) t = tempo (minutos)  = parâmetro que deve ser determinado a partir de medições no campo (1/minuto)

49 Infiltração conforme o tipo de solo

50 Exercício Uma camada de solo argiloso, cuja capacidade de infiltração na condição de saturação é de 4 mm.hora-1, está saturado e recebendo chuva com intensidade de 27 mm.hora-1. Qual é o escoamento (litros por segundo) que está sendo gerado em uma área de 10m2 deste solo, considerando que está saturado?

51 Exercício Uma medição de infiltração utilizando o método dos anéis concêntricos apresentou o seguinte resultado. Utilize estes dados para estimar os parâmetros fc, fo e  da equação de Horton. Tempo (min) Total Infiltrado (mm) 0,0 1 41,5 2 60,4 3 70,4 4 76,0 5 82,6 6 90,8 7 97,1 8 104,0 9 111,7 10 115,1 15 138,1 20 163,3 24 180,8

52 Modelo de capacidade de infiltração de Green e Ampt
Esta equação está baseada numa visão simplificada do processo de infiltração de água no solo. O processo de infiltração idealizado por Green e Ampt é de uma frente de molhamento abrupta. A frente de molhamento abrupta separa o solo saturado (acima) do solo relativamente seco abaixo.

53 Green e Ampt O modelo de infiltração de Green e Ampt descreve o processo de avanço da frente de molhamento ao longo do tempo. A profundidade L da frente é relacionada ao tempo do processo de infiltração t. O solo tem uma porosidade a e um conteúdo de umidade inicial qi.

54 Green e Ampt Considerando válido o avanço idealizado da frente abrupta de molhamento, a lâmina total infiltrada F pode ser relacionada à profundidade da frente L pela equação:

55 Green e Ampt onde F(t) é a lâmina total infiltrada desde o início do processo (mm); L é a profundidade atingida pela frente de molhamento (mm); a é a porosidade do solo; q é o conteúdo de umidade do solo no início do processo de infiltração (adimensional); Dq é o déficit inicial de umidade do solo em relação à saturação.

56 Green e Ampt A mesma frente de molhamento pode ser analisada considerando válida uma aproximação por diferenças finitas da lei de Darcy, aplicada desde a superfície do solo até a frente de molhamento: sendo então Onde f é a taxa de infiltração (ou derivada de dF/dt)

57 Green e Ampt Combinando Com Chega-se a: Considerando que f=dF/dt

58 Green e Ampt A solução da equação diferencial: É:

59 Green e Ampt onde y é o potencial mátrico (mm); t é o tempo (horas);
K é a condutividade hidráulica (mm.hora-1); F(t) é a lâmina total infiltrada desde o início do processo (mm); Dq é o déficit inicial de umidade do solo em relação à saturação (adimensional). Considerando conhecidos os valores de y, K, t e Dq a equação acima pode ser resolvida iterativamente por um método numérico como o método de Newton. Alternativamente pode ser usado o Solver do Excel ou um método de busca de raiz de uma calculadora.

60 Green e Ampt Encontrado o valor de F(t), pela equação anterior, o valor de f(t) pode ser obtido por: Idealmente, os valores de y e K deveriam ser obtidos por ensaios de campo no local que se deseja aplicar o modelo de Green Ampt. Entretanto, isso nem sempre é possível. Alguns valores, obtidos a partir de análises de diferentes solos dos EUA pode ser utilizados como base, conforme tabela a seguir.

61 Parâmetros para Green e Ampt
Textura Porosidade - a Porosidade efetiva - qe Potencial mátrico - y (mm) Condutivida de hidráulica - K (mm.hora-1) Arenosa 0,437 0,417 49,5 117,8 Areia Franca 0,401 61,3 29,9 Franco Arenosa 0,453 0,412 110,1 10,9 Franca 0,463 0,434 88,9 3,4 Franco Siltosa 0,501 0,486 166,8 6,5 Franco argilo arenosa 0,398 0,330 218,5 1,5 Franco argilosa 0,464 0,309 208,8 1,0 Franco argilo siltosa 0,471 0,432 273,0 Argilo arenosa 0,430 0,321 239,0 0,6 Argilo siltosa 0,479 0,423 292,2 0,5 Argilosa 0,475 0,385 316,3 0,3 Textura (português) Textura (inglês)  Arenosa Sand areia franca Loamy sand         franco arenosa Sandy loam           franco siltosa Silt loam franca Loam             franco argilo arenosa Sandy clay loam   franco argilo siltosa Silty clay loam franco argilosa Clay loam         argilo arenosa Sandy clay         argilo siltosa Silty clay             argila Clay                 Siltosa Silt

62 Green e Ampt

63

64 Parâmetros para Green e Ampt
Textura Porosidade - a Porosidade efetiva - qe Potencial mátrico - y (mm) Condutivida de hidráulica - K (mm.hora-1) Arenosa 0,437 0,417 49,5 117,8 Areia Franca 0,401 61,3 29,9 Franco Arenosa 0,453 0,412 110,1 10,9 Franca 0,463 0,434 88,9 3,4 Franco Siltosa 0,501 0,486 166,8 6,5 Franco argilo arenosa 0,398 0,330 218,5 1,5 Franco argilosa 0,464 0,309 208,8 1,0 Franco argilo siltosa 0,471 0,432 273,0 Argilo arenosa 0,430 0,321 239,0 0,6 Argilo siltosa 0,479 0,423 292,2 0,5 Argilosa 0,475 0,385 316,3 0,3 Textura (português) Textura (inglês)  Arenosa Sand areia franca Loamy sand         franco arenosa Sandy loam           franco siltosa Silt loam franca Loam             franco argilo arenosa Sandy clay loam   franco argilo siltosa Silty clay loam franco argilosa Clay loam         argilo arenosa Sandy clay         argilo siltosa Silty clay             argila Clay                 Siltosa Silt Tabela 7.2

65 Green e Ampt e método de Newton
onde y é o potencial mátrico (mm); t é o tempo (horas); K é a condutividade hidráulica (mm.hora-1); F(t) é a lâmina total infiltrada desde o início do processo (mm); Dq é o déficit inicial de umidade do solo em relação à saturação (adimensional). Considerando conhecidos os valores de y, K, t e Dq a equação acima pode ser resolvida iterativamente por um método numérico como o método de Newton. Alternativamente pode ser usado o Solver do Excel ou um método de busca de raiz de uma calculadora.

66 Método de Newton-Raphson
Supõe-se que a raiz pode ser encontrada seguindo uma linha reta dada pela derivada da função no ponto inicial F(x) x Tentativa inicial

67 Método de Newton-Raphson
Supõe-se que a raiz pode ser encontrada seguindo uma linha reta dada pela derivada da função no ponto inicial F(x) x derivada Tentativa inicial

68 Método de Newton-Raphson
Supõe-se que a raiz pode ser encontrada seguindo uma linha reta dada pela derivada da função no ponto inicial F(x) x derivada Tentativa inicial

69 Método de Newton-Raphson
Supõe-se que a raiz pode ser encontrada seguindo uma linha reta dada pela derivada da função no ponto inicial F(x) x derivada

70 Método de Newton-Raphson
Supõe-se que a raiz pode ser encontrada seguindo uma linha reta dada pela derivada da função no ponto inicial F(x) x

71 Método de Newton-Raphson
Por série de Taylor se então

72 Método de Newton-Raphson
Por série de Taylor Supondo que (xi+1 é a raiz)

73 Método das Secantes Um possível problema do método de Newton-Raphson, especialmente em recursos hídricos, é que pode ser difícil estimar a derivada da função. Neste caso é possível utilizar uma aproximação numérica para a derivada, gerando o método das secantes.

74 Método das Secantes f(x) x Tentativa inicial secante

75 Método das Secantes f(x) x Tentativa inicial secante

76 Exemplo Green e Ampt Considere um solo de textura argilo-arenosa. Calcule a capacidade de infiltração usando o modelo de Green e Ampt em incrementos de 6 minutos até uma duração total de 2 horas. Considere que o solo encontra-se com uma saturação relativa de 25%.

77

78

79 0,06

80

81

82 (Eq. 7.13)

83 Exemplo Green e Ampt


Carregar ppt "Infiltração e Água no Solo"

Apresentações semelhantes


Anúncios Google