A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

Apresentações semelhantes


Apresentação em tema: "GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima"— Transcrição da apresentação:

1 GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima
Introdução GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima

2 Programa do curso Introdução (conceitos) Semicondutores
Fonte de tensão Fonte de Corrente Teorema de Thevenin Teorema de Norton Resistores/capacitores (revisão) Semicondutores Revisão semicondutores Diodos Tipos de diodos e aplicações Transistores Transistores bipolares, polarização e aplicações Cont. Amplificadores de tensão e de potência Seguidor de emissor Transistor de efeito de campo Circuitos com FET Amplificadores Operacionais e aplicações Osciladores Filtros Instrumentação/ferramentas Osciloscópio Digital Fontes de alimentação Gerador de funções Multímetro Digital Ferramenta de CAD (?)

3 Programa do curso Aplicações Projetos da disciplina
Fontes de alimentação Conversores A/D e D/A Comunicação: interfaces RS232, RS485 Projetos da disciplina Exercícios escolares Referências Eletrônica, Malvino, Vol I e Vol II, 4a Edição, Pearson Education – Makron Books, Dispositivos Eletrônicos e Teoria de circuitos, Robert L. Boylestad, Loius Nashelsky, 8a edição, Pearson Education – Prentice Hall, 2004. Microeletrônica, Kenneth C Smith, Adel S. Sedra, 4ª edição.

4 Projetos da disciplina
Fonte de alimentação Reguladores de tensão Filtros Amplificadores de baixa potência (som) Conversor A/D e D/A Osciladores Comunicação Robô

5 Projeto - Robô Robô A/D D/A A/D D/A Driver Driver Driver
Sensor de proximidade Projeto - Robô Mux-Analógico(chave MOS) Amplificador A/D Microfone Auto-falante D/A Amplificador Microfone A/D Robô Motor DC Driver D/A Auto-falante Motor DC Driver Motor de passo Driver

6 Fontes de alimentação Fonte de alimentação
Para que qualquer circuito funcione adequadamente é necessário uma fonte de energia: Fonte de tensão Fornece uma tensão constante ao circuito conectado a ela. Fonte de corrente Fornece uma corrente constante ao circuito conectado a ela.

7 Fonte de tensão Fonte de alimentação que fornece uma tensão constante ao circuito conectado a ela, “independente” de sua carga elétrica. Dizemos que uma fonte de tensão é ideal quando ela apresenta uma resistência interna igual a “zero”. Ou seja, apenas a corrente muda no circuito em função da carga RL Uma fonte de tensão Real, no entanto, não pode fornecer uma corrente infinita quando sua carga vai para zero, uma vez que a mesma sempre possui uma pequena resistência interna. Não existe fonte de tensão capaz de fornecer uma corrente de valor infinito desde que toda fonte de tensão possui uma resistência interna + V RL I = V/RL ? RS VL < V 0 

8 Fonte de tensão Real VL = 12 - IRS Características Exemplo:
Deve possuir sempre uma resistência interna bem menor que a resistência de carga. Para fins de cálculo podemos desprezar está resistência interna da fonte quando a mesma é da ordem de 100 vezes menor que a resistência equivalente da carga do circuito. Exemplo: I = V/RL RL >> RS + RS = 0,06  VL < V V=12V RL  6  VL = IRS

9 Fonte de corrente Fonte de alimentação que fornece uma corrente constante ao circuito conectado a ela, “independente” de sua carga elétrica. Dizemos que uma fonte de corrente é ideal quando ela apresenta uma resistência interna muito alta. Ou seja, apenas a tensão muda no circuito em função da carga RL Uma fonte de corrente Real fornece uma corrente quase constante quando o valor da resistência de sua carga é bem inferior a sua resistência interna. Como RL é bem menor que a resistência interna da fonte, a corrente quase não se altera no circuito (I constante) << RS + V RL I = V/(RS+RL) Constante RS

10 Fonte de corrente Características Exemplo:
Deve possuir sempre uma resistência interna bem maior (ideal seria RS -> ) que a resistência de carga. Para fins de cálculo podemos desprezar o valor da resistência de carga do circuito quando esta é da ordem de 100 vezes menor que a resistência interna da fonte. Exemplo: Fonte de corrente Real (simbologia) I = (10x106+RL) + RS = 10 M V=12V RS RL = 10K

11 Fonte de corrente I RS (10M ) RL I = 12 A (10x106+RL) RL (K) I(A)
1,200 1 1,199 10 1,198 100 1,188 1000 1,090 I RS (10M ) RL I = A (10x106+RL) RL (K) I(A) 100 Ponto de 99% Região quase ideal

12 Teorema de Thevenin O teorema de Thevenin visa simplificar a análise de um circuito em observação, com qualquer combinação de resistores (malha resistiva) e fontes, considerando um único circuito equivalente que comporta apenas uma única fonte e um resistor em série. A resistência de Thevenin é a resistência equivalente vista entre os pontos A e B com as resistências de todas as fontes de tensão substutuídas por um curto circuito (RS=0) e todas as resistências de fonte de corrente substituídas por um circuito aberto (RS=). A tensão de thevenin é a tensão na carga com o circuito aberto. Circuito equivalente Thevenin

13 Teorema de Thevenin Exemplo Circuito original Equivalente Thevenin
A tensão de Thevenin é aquela que aparece nos terminais de carga quando desconectamos o resistor de carga. (1K) (2K) 12V Circuito original Resistor de carga (RL) (2K) 6V Equivalente Thevenin (RL)

14 Teorema de Norton Qualquer coleção de fontes e resistores (malha resistiva) com dois terminais é eletricamente equivalente a uma fonte de corrente ideal em paralelo com resistor. O valor do resistor é o mesmo que aquele no circuito equivalente Thevenin. A corrente da fonte de corrente pode ser encontrada dividindo-se a tensão do circuito aberto (Thevenin) pelo valor do resistor. Tensão de Thevenin i = VAB/r =

15 Teorema de Norton Exemplo i = VAB/r= 6/2000 (A) = 0,003 A
Tensão de Thevenin = 2K (1K) (2K) 12V (2K)

16 Thevenin - Norton Dado o circuito abaixo, calcular Potência ?
O circuito equivalente Thevenin A potência dissipada em R6 O circuito equivalente Norton Potência ? Valor dos resistores em 

17 a) Remova R2 do circuito b) Calcule o resistor resultante de R3||R4 c) Calcule valor da VAB a qual é igual a tensão em RA V1= 20 V R2 e RA dividem a tensão (são divisores de tensão no circuito) VR2= VRA=10 V Que será a tensão de Thevenin

18 e) Calcule a resistência equivalente vista a partir A e B
d) Remova V1 e insira sua resistência equivalente (considere RVT = 0 ) e) Calcule a resistência equivalente vista a partir A e B f) Circuito equivalente Thevenin h) Circuito equivalente Norton 14.5  Potência em R6 P= V.I = R. I.I = R.I2 I = VT/RT+R6 => I = 10/(14.5+R6) A = 0,606 A P = (2).(0,606)2 = 0,73 W I = 0.689

19 Thevenin Calcular a corrente fluindo em R6 e a potência dissipada. Utilize circuito equivalente Thevenin

20 Remova R6 do circuito. Calcular resistências equivalentes: R4 e R5 estão em paralelo com R3 c) Circuito com resistor equivalente RA = 4 RA= R3|| (R4 em série com R5)

21 corrente que flui em R2 por sua resistência
d) A tensão VAB é igual a tensão em R2. VR2 pode ser calculada multiplicando-se a corrente que flui em R2 por sua resistência I = (V1-V2)/(R1+R2) => I = 18/12 = 1,5 A Logo: VR2= VAB = I.R2 = 12V I VR2 = 12V e) Cálculo da resistência equivalente Substitua as fontes por suas resistências equivalentes e calcule a Resistência equivalente do circuito vista a partir de AB R = R1||R2 = 2,66

22 f) Circuito equivalente Thevenin.
Repondo R6 nós temos que: 1. Corrente em R6 I = 12/(ZT+R6) = 0.94 A 2. Potência dissipada em R6 P = R6. I2 = 5,3 W g) Circuito equivalente Norton 6.67  I = 1.799

23 Exercícios Exercícios de revisão Pgs 16 – 21 (Malvino – Vol I)


Carregar ppt "GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima"

Apresentações semelhantes


Anúncios Google