A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

A importância do saber medir bem Possivelmente, além das necessidades primitivas de controlar rebanhos e construir moradias, as sociedades nascentes foram.

Apresentações semelhantes


Apresentação em tema: "A importância do saber medir bem Possivelmente, além das necessidades primitivas de controlar rebanhos e construir moradias, as sociedades nascentes foram."— Transcrição da apresentação:

1 A importância do saber medir bem Possivelmente, além das necessidades primitivas de controlar rebanhos e construir moradias, as sociedades nascentes foram obrigadas a desenvolver as artes medicinais, a linguagem escrita, a astronomia, a geometria, a matemática e conhecimentos rudimentares de física. É provável que a necessidade de medir o tempo, prever enchentes e inundações, programar plantios, colheitas e armazenamento de alimentos para consumo em tempo de estiagem e guerras, construir habitações, templos, monumentos e cidades é que constituíram as principais alavancas do progresso cultural e científico. Deste modo, o conceito intuitivo e prático do que seja uma grandeza e sua medida era inerente aos diversos ramos da ciência e da técnica dos diversos povos; e a arte de medir bem refletia, de certo modo, o avanço cultural de cada povo.

2 O Egipto foi descrito por Heródoto, o antigo historiador grego, como sendo "uma dádiva do Nilo". Ainda hoje, a sua vida rural está dependente das férteis margens do segundo maior rio do mundo. No antigo Egito, os agrimensores remarcavam os lotes de terras férteis anualmente inundadas pelo Nilo; seus engenheiros podiam avaliar as enchentes do Nilo, medindo periodicamente o nível de suas águas. Foram capazes de medir, com bastante precisão, distâncias e comprimentos, as superfícies de seus campos, áreas de figuras geométricas simples (triângulos, retângulos, etc.), volumes elementares (inclusive o da pirâmide truncada) e até mesmo chegar ao resultado relativamente exato de 3,16 para o valor de.

3 As pirâmides eram assentadas com tanta precisão que, apenas por fração de centímetro, suas bases deixavam de ser quadrados "perfeitos". Os terraços que serviam de fundação para a grande pirâmide de Quéops eram bem nivelados para que toda a estrutura não saísse torta. Com instrumentos modernos, peritos constataram que o canto sudeste desta pirâmide está apenas pouco mais de um centímetro mais alto que o canto noroeste Isto para uma base, cuja área é de m 2 aproximadamente!

4 Whereas, in order to the finding out of the longitude of places for perfecting navigation and astronomy, we have resolved to build a small observatory within our Park at Greenwich... Charles II O problema da longitude marítima John Harrison, inventor do pêndulo composto e de diversos relógios Para cada 15° a leste, o tempo local se adianta uma hora. Similarmente, viajando a oeste, o tempo local se atrasa uma hora. Em 1714, o governo britânico ofereceu um prêmio de £20,000 a quem apresentasse uma solução do problema com precisão de meio grau (2 minutos). O modelo 4 do relógio de Harrison foi testado, com sucesso em Após uma longa história polêmica ele finalmente recebeu parte do prêmio, £8750, por decisão do Parlamento em 1773, quando ele já tinha 79 anos de idade. Somente então ele ficou reconhecido como quem resolveu o problema.

5 Harrison 1 Harrison 2 Harrison 3 Harrison 4

6 Henry Cavendish Cientista inglês, famoso pela descoberta do Hidrogênio: ar inflamável - medida da densidade da Terra (5.48 x da água), (posteriormente este valor foi utilizado para calcular G) - pesquisa em Eletricidade. - seu amperímetro era seu próprio corpo: media correntes através das DORES que sentia ao tomar choques. A balança de torção de Cavendish Na eletricidade: - o potencial elétrico, - unidade da capacitância, - a fórmula do capacitor de placas planas, - o conceito de constante dielétrica, - a Lei de Ohm (Ups!), - a Ponte de Wheatstone (Ups!), - a Lei de Coulomb (Ups!).

7 Medidas precisas da velocidade da luz Método de Roemer Galileu Galilei inventou o telescópio com o qual descobriu em 1610 os satélites de Júpiter e os anéis de Saturno. Método de Fizeau – 1849 (o método da roda dentada) Albert Einstein "A velocidade da luz em qualquer sistema de referência tem o mesmo valor, independente do movimento do referencial".

8 Albert Abraham Michelson Nasceu em Strelno, Prussia 1852 – 1931 Físico dos EUA - Nobel em Seu famoso experimento foi considerado a primeira prova forte contra a teoria de um éter luminifero (meio elástico hipotético em que se propagariam as ondas eletromagnéticas) mas que, por outro lado, demonstrou que a luz propagava-se independente ao meio, -mediu o metro padrão através do comprimento de onda da luz do Cádmio, - inventou vários interferômetros e espectroscópios e mediu a velocidade da luz com alta precisão, - mediu o diâmetro da estrela Betelgeuse (constelação de Orion), feito considerado como a primeira determinação precisa desta natureza.

9 Michael Faraday Consta que Gladstone, primeiro-ministro britânico, teria perguntado ao cientista: "Senhor Faraday, isto tudo é interessante, mas qual é sua utilidade? Ao que Faraday respondeu secamente: "Talvez, senhor, esta descoberta dê lugar a uma grande indústria, da qual o senhor possa arrecadar impostos". Faraday apresentou suas observações à Royal Institution, em 1831, num volume que denominou Pesquisas Experimentais em Eletricidade.

10 Difração de elétrons Queda livre Galileu Gota de óleo Millikan Decomposição da luz Newton Experimento de Young Experimento de Cavendish Descoberta do Núcleo - Rutheford Pêndulo de Foucault

11 O maior experimento de todos os tempos: Large Hadron Collider (LHC) ou Super Collider Centro Europeu de Pesquisas Nucleares (Cern) Um túnel circular com 27 quilômetros de extensão (Suiça/França), 100 metros abaixo do solo. No LHC são quatro os principais detectores. Dois deles: Atlas, 46 metros de comprimento, 25 de altura e 7 mil toneladas, Compact Muon Solenoid (CMS), 21, 12 e 12,5 mil.

12 Qual é a origem da massa? Porque a matéria corresponde a apenas 4% do Universo? Porque a natureza prioriza a matéria sobre a anti-matéria? O Universo possui alguma dimensão extra desconhecida?

13 Um investimento fantástico Os feixes de partículas serão mantidos à temperatura de -271°C As partículas serão aceleradas em um anel com 27 quilômetros de extensão. Os prótons atingirão a velocidade de 1,079 bilhão de quilômetros por hora ou 99, % da velocidade da luz A cada segundo, as partículas completarão voltas no anel do acelerador Calcula-se que ocorrerão 600 milhões de colisões por segundo Energia da colisão será de 14 trilhões de elétrons-volt, elevadíssima para as partículas, mas suficiente para manter um celular ligado apenas por poucos segundos As colisões devem gerar 70 mil gigabytes de dados por segundo Cerca de 10 mil físicos e engenheiros participarão dos experimentos do LHC. O orçamento do Cern foi de quase US$ 1 bilhão em 2007

14 A tecnologia cresceu dramaticamente durante os últimos 50 anos! O que não aprendemos na graduação: O que medir? Como medir? Escolher o equipamento comercial mais adequado, Utilizar os equipamentos comerciais de forma efetiva, Projetar/construir equipamentos não disponíveis comercialmente. Medir bem >>>>>> Tecnologia >>>>>> Avanços sociais

15 Transdutores Um exemplo: Termopar Outros exemplos: Termistores - resistor de platina Sensores de luz Strain-gage Piezoelétricos Efeito Hall – campo magnético Medidores de vácuo Microfone – autofalante Detectores de radiação, etc.

16 O que é uma fonte de tensão ? Um gerador Van der Graff ? Uma bateria ? Uma hidroelétrica? Um neurônio ? Um termopar ? O que distingue um dos outros ?

17 Eletricidade estática" não significa Carga parada. Na prática: Eletricidade estática" = Alta voltagem" Qualquer faísca (mesmo invisível) surge devido a uma diferença de potencial de no mínimo 500 V Gerador de Van de Graaff ( uma bateria de mega-volts) Robert VandeGraaff, estudante de Física do MIT Bomba de cargas

18 Um eletrômetro simples Baterias e GVDG atuam como bombas de carga elétrica. Bateria altas correntes (12 V, 500 A = 6 kW) VDGG altas voltagens ( V, 50 A = 5 W) Bateria voltagem constante, corrente variável GVDG corrente constante, voltagem variável Bateria com baixa resistência de carga V constante, I alta GVDG com baixa resistência de carga I constante, V baixa Para medir tensão estática é necessário um instrumento de alta resistência interna : Eletrômetro Breve comparação entre Baterias e GVDG

19 Nada acontece por acidente. Não existe magia negra em eletrônica e instrumentação. Sempre há uma razão lógica para algo funcionar bem (ou mal). A eletricidade é potencialmente perigosa quando manuseada por leigos ou mal intencionados. Forças elétricas não fazem parte do nosso cotidiano, mas existem e são extremamente intensas. O truque da ciência ELETRÔNICA é descobrir maneiras de enfraquecer estas forças tornando-as passíveis de utilização em situações controladas e seguras.

20 Voltímetros analógicos – baixa resistência interna (< M ) Instrumentos de medida A voltagem medida não é igual àquela que havia na ausência da medida. Isto nada tem a ver com o Princípio da Incerteza; Tem a ver apenas com a baixa qualidade da medida.

21 Amperímetros analógicos – alta resistência interna ( - k )

22 Medida de resistências pelo método de Kelvin, ou 4 pontas (minimiza contribuição da resistências dos fios) Ohmímetros Efeitos colaterais: Corrente em R x Aquecimento de R x Mede (R x + R fios )

23 Voltagem: alta resistência interna – M Corrente: baixa resistência interna - 3 ½ dígitos Multímetros digitais

24 Um problema simples: Como fazer para medir variação na resistência de um resistor de 10 k quando a temperatura varia 1 grau centígrado ? Primeira sugestão: usando o nosso voltímetro digital ! Será que ele serve para esta finalidade ? Será que um voltímetro melhor (e mais caro) resolveria o problema ? Segunda sugestão: utilizando-se um galvanômetro ótico. Isto funciona bem só que hoje em dia este tipo de equipamento não é mais fabricado. Terceira sugestão: utilizando-se uma ponte de Wheatstone e um voltímetro (ou amperímetro) barato ! A única característica importante deste instrumento é ele tenha grande sensibilidade (pode ter baixa resolução) para detectar voltagens (ou correntes pequenas). O que é isto? É mágica ?

25 Esta é a ponte de Wheatstone

26 Técnicas experimentais especiais: baixo custo, simplicidade e eficiência Um exemplo: a ponte de Wheatstone altíssima resolução um sensível detector de nulo A pode ser um amperímetro ou um voltímetro. Obs.: não precisam estar calibrados !!!

27 Um exemplo: Medida de voltagem Um exemplo: Medida de voltagem

28 Outro exemplo: Medida de corrente

29 Efeito da indução de correntes (e tensões) por campos externos

30 Amplificadores de entrada tipo single-ended Entrada diferencial Circuito de entrada dos instrumentos de medida

31 True RMS voltmeter Voltímetro true sqrt = sqrt(a 2 )= a Voltímetro normal = = a Voltímetro true sqrt = sqrt(a 2 /2)= 0.707a Voltímetro normal = = 0.5a Nunca testei este multímetro mas, o site abaixo diz que ele não é o que está escrito ao lado da logomarca! Voltímetro true sqrt = sqrt[(a/2) 2 ]= 0.5a Voltímetro normal = = 0.5a Cuidado ! ! !

32 RMS da onda senoidal: sqrt = V o Valor médio da onda senoidal retificada: = V o fator de calibração: / = 1.1 RMS da onda quadrada: sqrt = V o Valor médio da onda quadrada retificada: = V o Portanto, se o voltímetro foi calibrado para onda senoidal (o que geralmente é) então, a leitura de uma onda quadrada estará afetada por um erro de 10%

33 Ruído Tipos: Ruído térmico (Johnson, Nyquist, branco) - resistores Shot noise (branco) - válvulas e semicondutores Ruido de contatos Burst Noise - impurezas metálicas em junções semicondutores, etc Interferência Forma espectral: Branco (constante) Cor-de-rosa (1/f) Vermelho (1/f 2 ), etc

34 Ruído Térmico Nyquist (1920), Johnson (1928) k = Constante de Boltzmann T = Temperatura (K) f = Largura de banda (Hz) R = Resistência ( )

35 Isto é um empecilho para grande parte dos transdutores !!! Corrente mínima detectável Medida de grandezas pequenas: ( – V), (10 -9 – A) Voltagem mínima detectável Para diminuir I min é necessário: aumentar R G, diminuir f. Para diminuir min é necessário: diminuir R i, diminuir f.

36 Outros efeitos que produzem ruídos não intrínsecos Que afetam as correntes: Efeitos triboelétricos: geração de cargas por atrito entre condutores e isolantes (vibração) Efeitos piezoelétricos: correntes geradas quando isolantes são submetidos a tensões mecânicas. Efeitos de cargas espaciais induzidas: alteração mecânica da capacitância parasita de conectores que modulam voltagens de interesse. Efeitos eletroquímicos: tipicamente umidade ou sujeira nas conexões ou placas de circuito impresso. Que afetam as voltagens: Tensões termoelétricas: efeito Seebeck (termopares) Campos magnéticos externos Laços de terra

37 O eletrômetro O eletrômetro é um multímetro refinado de alta sensibilidade. Ele permite medir voltagem, corrente, resistência e carga. Estrondosamente mais sensível que os DMM convencionais. Você vai precisar de um eletrômetro quando: Correntes abaixo de 1 nA (10 -9 A) Resistências maiores que 100 M (10 8 ) Fluxo de cargas de até C Resistência interna da fonte de tensão acima de 1 M Medidas de variação rápidas de corrente Medida de sinais próximos ao limite do ruído Johnson Características especiais: Alta resistência de entrada: – Corrente de offset baixa: – A Grande estabilidade térmica e temporal

38 A = Realização prática de um Amperímetro Shunt (normal)

39 A = Resistência de entrada é menor (R e = R f /A). Pouco influenciado pela resistividade dos fios/conectores. Capacitância de entrada é menor (menor rise/fall time). Realização prática de um amperímetro Feedback (fast)

40 Mesmo que o seu voltímetro seja ideal, você ainda vai precisar de bons isolantes. Safira : – cm Teflon: – cm Cerâmica: – cm PVC : – cm Necessidade de cabos coaxiais especiais

41 Guarding Efeito principal do guarding: eliminar os efeitos de leakage Efeito secundário: redução da capacitância de entrada.

42 Elementos de entrada dos amplificadores

43 Relação Sinal/Ruído A transformada de Fourier espalha o ruído

44 Promediação Para reduzir-se a amplitude do ruído por um fator 2 é necessário multiplicar o número de médias por um fator 4 Isto é conseqüência do teorema do limite central aplicado a ruídos genuinamente aleatórios

45 Over-Sampling Under-Sampling (aliasing) Amostragem (Sampling) Critério de Nyquist: no mínimo 2 samplings por período!

46 Média móvel (Smoothing) Um exemplo simples: sinal senoidal com período igual a 100 A média é efetuada com 2N+1 pontos: o ponto central + N à esquerda + N à direita

47 A mágica do Lock-in (amplificador sensível à fase do sinal)

48 A matemática do lock-in A saída do lock-in corresponde a um caso particular da chamada: Função de correlação: Caso mais simples: Referência: Sinal: Caso mais geral: Referência: Sinal: que pode ser interpretada como a média temporal:

49 O problema da fase do sinal (porque o lockin também se chama amplificador sensível à fase)

50 Relação entre o lock-in e a Transformada de Fourier Ou seja, a saída do lock-in, obtida em fase e em quadratura, corresponde à Transformada de Fourier do sinal na freqüência da referência. (deu prá entender?)

51 log( f ) 1/f noise 0 White noise Signal at 1 kHz 10 Hz kHz log( f ) 1/f noise White noise 10 Hz kHz Porque os amplificadores operam em altas freqüências ? Dependência do ruído com a freqüência: Baixa freqüência ~ 1 / f = ruído cor-de-rosa examplo: temperatura (0.1 Hz), pressão (1 Hz), acoustica ( Hz) Alta freqüência ~ constante = ruído branco examplp: ruído shot, ruído Johnson O ruído total depende bastante da freqüência pior em DC, melhor na região do ruído branco Problema – a maioria dos sinais de interesse são DC ou quase-DC

52 Lockin virtual (Lab View + Graphical User Interface, GUI)

53 Lockin Virtual Problemas mais comuns: Hardware e software tem que funcionar em tempo real ! ! ! ! Digitalização de sinais: ADC com 32 bits a 100 kHz ! ! ! ! Full adders rápidos Rápida transferência de dados para a mémoria

54 Um experimento simples de ótica Detector DC

55 O que se espera a respeito do ruído? Ruído 1/F Interferências nas freqüências da rede: 50, 100 e 150 Hz (caso da Alemanha)

56 O efeito de um filtro passa-baixa

57 Outro experimento ainda simples, porém melhor que o anterior: Detector AC

58 Fator de qualidade: Q = F / F Melhor situação: Q = 50 F = 3.5 Hz (insuficiente!) Amplificador sintonizado

59 Um retificador mais inteligente: Uma chave analógica e um filtro passa-baixa

60 Uma chave analógica melhor:

61 Diferença de fase: 90 o

62 Diferença de fase: 180 o

63 Diferença de fase: 270 o

64 A função da chave é multiplicar o sinal por uma onda quadrada, portanto, ela tem problemas (não muito sérios): Os harmônicos da freqüência fundamental

65 Um retificador melhor ainda: O multiplicador analógico

66 O esquema básico de um lock-in profissional

67 A largura de banda do lock-in: uma demonstração

68 O teorema de Wiener-Khinchin Como a redução do ruído depende do tempo de integração (ou constante de tempo do filtro passa-baixa) e da largura de banda? A potência do ruído transmitido é diretamente proporcional à largura de banda, LB = /2, portanto, a voltagem rms do ruído na saída é proporcional à raiz quadrada da largura de banda.

69 Detecção do segundo harmônico

70 Um truque para medir sinais DC ou quase DC com o lockin: Utiliza-se modulação senoidal e o resultado é similar a uma diferenciação


Carregar ppt "A importância do saber medir bem Possivelmente, além das necessidades primitivas de controlar rebanhos e construir moradias, as sociedades nascentes foram."

Apresentações semelhantes


Anúncios Google