A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Computação Pervasiva IFSC, 03 de Julho 2005 Prof. Dr. Sergio Takeo Kofuji, EPUSP.

Apresentações semelhantes


Apresentação em tema: "1 Computação Pervasiva IFSC, 03 de Julho 2005 Prof. Dr. Sergio Takeo Kofuji, EPUSP."— Transcrição da apresentação:

1 1 Computação Pervasiva IFSC, 03 de Julho 2005 Prof. Dr. Sergio Takeo Kofuji, EPUSP

2 2 Admirável Mundo Novo

3 3 Evolução da Computação Mainframe (60’s-70’s) Desktop (80’s-90’s) Ubiquitous (00’s-?) –Redes WANs, LANs, PANs

4 4 Tendências da Tecnologia de Computação 1970s 1990s amanhã

5 5 Visão de Mark Weiser Xerox Palo Alto “Ubiquitous computing is the method of enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user” –UbiComp –Acesso à computação a qualquer instante, em qualquer lugar “Invisible Computing”, “Calm Technology”

6 6 LiveBoard, Xerox PARC Source: Elrod et al., 1992

7 7 Mark Weiser

8 8 Pervasive Computing Pervasive Computing: –Computadores e Serviços disponíveis e distribuídos em escala ampla, interconectados com pouca mobilidade

9 9 Ontem Cool toys… Too bad they can’t talk to each other…

10 10 Hoje Sync. Download. Done. Configuration? Too much work…

11 11 Amanhã? Thank God! Everything is done for me!

12 12 Computação Ubíqua vs Pervasiva Desafio principal em computação ubíqua: integrar mobilidade em larga escala com funcionalidade de computação pervasiva –Construir modelos dinamicos de ambiente –Configurar serviços de acordo Desafios técnicos, sociais e organizacionais

13 13 Tópicos Informação nos lugares –Media linked to places –Smart rooms Sentient Things –Adding information and communication to physical objects Cidades Digitais - Digital Cities –Adding information capabilities to urban places –HP’s CooltownCooltown Bits Tangíveis - Tangible bits –Manipulating the virtual world by manipulating physical objects Computadores Vestíveis - Wearable computers –Sensing, computing, and communicating gear worn as clothing –Cyborg communities Control their presence in the technological worldComputer chips infiltrating buildings, furniture, and even clothing RFIDs como sucessores do Barcode Leads to pervasive surveillance questions Dispositivos de Localização Geográfico - Geographic Location Devices –WorldBoard – proposed global infrastructure to associate information with places –GPS E-squirting –Using radio frequencies to transmit information between devices –Bluetooth

14 14 Computação Pervasiva Context Aware

15 15 Context Aware Computing Serviços de Computação sentem aspectos do ambiente (locação, emoção do usuário,…) e adequa os serviços Ex. Se eu andar até uma sala de conferência, meu email é projetado na tela maior da sala

16 16 Contexto Aplicações com o comportamento determinado pelo estado de contexto (Context-Aware Computing) Diversas definições para a palavra “contexto” Consideraremos: –“all relevant information to an application that this one can obtain”. –“all element which, after a change on its states, triggers an addaptation process on the application”. –Example: user activity, localization, number of appliances, kind of appliances, computional power needs, resources that can be used... Visão particular de cada aplicação –Different interests in different momments –Different interpretation of some given information

17 17 Definições de Contexto Contexto Computacional: conectividade de rede, custo de comunicação, largura de banda de comunicação, recursos das proximidades Contexto de Usuário: perfil do usuário, localização, situação social Contexto Físico: iluminação, ruído, condição de tráfego, temperatura Contexto de Tempo: hora do dia, semana, mês, estação do ano

18 18 “Context Awareness” “Active context awareness”: uma aplicação automaticamente adapta-se para o contexto descoberto, mudando o comportamento da aplicação “Passive context awareness”:“Passive context awareness”: uma aplicação apresenta o contexto novo ou atualizado para um usuário interessado ou faz o contexto persistente para o usuário recuperar mais tarde >>“Active context awareness”: é mais interessante

19 19 Exemplos Call Forwarding –Olivetti, active, user location, based on active Badge –Location of the user is presented to the receptionist and the call will be forwarded –Recently, automatically forward Teleporting –Olivetti/AT&T, active, user location, workstation location, based on active Badge –Application follows the user while he moves around –Augment resource-poor PDA with surrounding computing resources

20 20 Exemplos Active Map –XEROX PARCTab, passive, user’s location –Every room has a wireless station and room number of the user is collected and updated on a map Mobisaic Web Browser –U of Washington, active, location and time –Hypertext links contain environment variables, extending standard browser

21 21 Exemplos Shopping Assistant –AT&T Bell Lab, active, locaiton –Guide shoppers throughout the store and provide information Cyberguide –Georgia IT, passive/active, location and time –Outdoor/GPS, indoor/TV Remote based IR –Travel diary is compiled and recommendation

22 22 Exemplos Conference Assistant –Georgia IT, passive/active, location, time and schedule of presentations –Recommend presentations to attendees based on schedule, topic, location and research interest People and Object Pager, U of Kent Fieldwork, U of Kent

23 23 Exemplos - Sumário Active Badge & PARCTab Assistente de Compras (Shopping) Cyberguide Sistema capaz de perceber o humor do usuário com base na expressão facial Casa onde a posição é sentida e a temperatura ajustada automaticamente

24 24 Questão Fundamental Como detectar o contexto? Como Localizar a Posição? –GPS –Triangulação rádio-bases celulares –Triangulação APs Wi-Fi –Triangulação Ultrassom –Localizadores espalhados ao longo do ambiente

25 25 Pervasive Computing Wearable Computing

26 26 Steve Mann - 1981

27 27 Wearable Computing

28 28 MIT Steve Mann @ U of T ECE Sandy Pentland @ MIT Media Lab Wearable Research @ CMU HCI Institute

29 29 Aplicações de WearComp

30 30 Wearable Computing

31 31 Protótipo, Indústria, Business

32 32 Produtos Comerciais

33 33 Produtos Comerciais

34 34 Produtos Comerciais

35 35 Aplicação de WearComp para VAT VAT - “Visual Assistive Technologies” Enhanced Access of Information ALVA Inc.’s Mobile Phone/Organizer For The Visually Impaired (Haklander, Tom, 2003) Greater Freedom of Movement The Voice (Meijer, Peter, 2003)

36 36 … –Sungkyunkwan University, South Korea –Chord Based Braille Gloves for Blind (Cho, M.et al, 2003)

37 37 … –University of Florida, USA –The Drishti (Helal, A.et al, 2003)

38 38 Computação Pervasiva Realidade Aumentada

39 39 O que é?  Uma combinação de uma cena REAL vista por um usuário e uma cena VIRTUAL gerada por um computador  Objetivo – aumentar a cena com informações adicionais

40 40 Realidade Aumentada

41 41 Como funciona?

42 42 Computação Pervasiva Smart Spaces

43 43 Smart Spaces Smart School Smart Classroom Smart City Smart Factory Pervasive Global Connectivity

44 44 Computação Pervasiva Robots…

45 45 Robots –Dan Kara, presidente da “Robotics Trends” estima que 4 milhões de robôs pessoais devam ser vendidos em 2006 –A “United Nations Economic Commission for Europe” prediz que mais que 2.1 milhões de robots para uso pessoal devam ser vendidos entre 2003 a 2006. –Crescimento Estimado de vendas: de 545,000 em 2002 a 1.5 milhões em 2006.

46 46 Roomba Robotic vacuum cleaner made by IRobot What does it do? –Clean about three average size rooms on a single battery charge, which lasts about 120 minutes –Detect the best cleaning pattern for a given room –Seek out dirt particles the size of finely ground pepper. –Tiny microphones can detect a high concentration of dust particles, for extra cleaning –Charge itself at a docking station

47 47 Roomba Vendas –Total em 2003: 470,000 unidades –Primeiros 3 meses 2004: Mais que 500.000 Preço –Versão Básica: $150 –Versão Topo de Linha: $250

48 48 Robosapien –Marketing “Fluid motions and gestures: fast dynamic 2-speed walking and turning; full-function arms with two types of grippers.” “67 pre-programmed functions: pick-up, throw, kick, dance, kung-fu, belch, rap and more;” “Fluent international ‘caveman’ speech” –Cost: Just $99

49 49 Aibo & QRIO Aibo (Sony) –Understands and responds to 100+ words and phrases –Built-in wireless LAN connectivity –Raise from a puppy or an adult –A multitude of facial expressions –Cost: $1800 QRIO –"SONY decided to create a 'partner' that talks to you, plays with you, encourages you" –Child-sized –Can walk on uneven surfaces, dance, have conversations, recognise faces, body language –Would cost $65,000 if released now

50 50 Computação Pervasiva Tecnologia

51 51 Tecnologias Comunicação Sem Fio Indentificadores RFIDs Rede de Sensores Segurança da Informação Computação Móvel Técnicas de Localização WEB/GRID e WEB/GRID Services

52 52 Quadro das Tecnologias Sem Fio

53 53 WLAN WLAN – requer lidar com o problema das paredes –Uso preferencial de frquencias abaixo de 5.. 10 GHz Conectividade abaixo de 10 GHz torna-se limitada devido a interferências –Usuários devem identificar produtos robustos –Soluções proprietarias podem fazer diferença –A camada MAC precisa ser melhorada para explorar melhor o canal físico e dar suporte ao reuso denso de frequências Otimizar para bit/s/Hz/m 3 em vez de bit/s/Hz –Agregar throughput para multiplos usuários é o fator chave abaixo de 10 GHz

54 54 WPAN Para uma WPAN é vantajoso se o sinal não atravesse as paredes – Limite natural de uma célula; limita a região de interferência – Eficiência espectral não é um aspecto chave de projeto – Bandwidth pode crescer mais rápido em padrões WPAN do que em WLAN (vide UWB- 400 Mbits/s) Conectividade acima de 10 GHz é limitada pelas barreiras físicas (paredes) – Um backbone é necessário para interconectar salas, com base numa tecnologia diferente Optimizar para eficiência de energia e custo

55 55 Rede Hierárquica 1.Broadband Internet Access (e.g. ADSL, WIMAX) – spectrum efficiency as critical factor 2.O Inhome backbone (e.g. WLAN or Ethernet) – differentiate on reliability, robustness to interference 3.O Personal Area Network (e.g USB, Bluetooth, UWB) – differentiate on throughput, latency – confined within a room by using high carrier frequencies 4.A Sensor network (e.g. zigbee, RFID, ) – differentiate on power

56 56 Rede Doméstica Kids’ RoomBedroom Living RoomStudy Wireless Base Station SL300iMC-i250 MX6000i (built-in module)DesXcape iPronto USB adapter Home PC

57 57 Rede Doméstica WLAN WPAN AP PC TV.11n <100 Mbit/s UWB e.g. 500 Mbit/s RefHome 2006: Hierarchical Wireless Network, growth of the WPAN Several devices (PC, TV, IntRadio) have WLAN connection and serve as gateway towards PAN Quasi instantaneous exchange within (UWB) PAN

58 58 Computação Pervasiva RFID

59 59 Setores da Indústria Industrial Field Service Healthcar e Retail/CPG Logistics RFID Across All Sectors Governme nt

60 60 Transponder (Tag, Label) RFID RFID Antenna RFID Chip

61 61 Memória do Tag Read Only Memory (ROM): –Data is burned into IC at manufacture –Can never be changed –Virtually no control or alignment of data content with respect to enterprise Write Once, Read Many (WORM) –Data generally written into the IC at factory and locked –When locked can not be reprogrammed Read/Write –Some data may be programmed at the factory and locked –Other data may be written, erased and rewritten into memory in the field By customer individually During operation

62 62 Alimentação do Tag PASSIVE - Beam Powered –Converts RF energy into DC power –Very Long Life products –Range is dependent on several factors: Reader Transmit Power Reader Sensitivity Integrated circuit efficiency Environmental conditions ACTIVE - Battery Powered –Generally operate asynchronously –Battery boosts range and tag sensitivity –Battery powers onboard functions when away from reader Passive RFID Tag Active RFID Tag Photo Source: PSG Electronics

63 63 Frequências Low Frequency - 125 KHz to 134 KHz. Worldwide –Good for liquids, good near metal. –Relatively expensive tags, very wide variety of shapes. –Can have large antennae with 4 to 5 feet of range. High Frequency - 13.56 MHz. Worldwide –Good for liquids, poor near metal. –Inexpensive tags, very wide variety of shapes, good Standards. –Generally up to 3 feet of range. UHF - 902-928MHz, 868MHz, 862-869MHz. –Poor near liquids or metals. –Very inexpensive tags, restrictions on shape. –Ranges of over 10 feet. uW - 2.45GHz. Worldwide –Very poor near liquids or metals. –Very small tags, potentially very low cost. –Ranges around 3 feet.

64 64 Funcionamento Reader/ Encoder Antenna / Portal RF Field Tag Host Computer  Tag enters RF field ‚ RF signal powers tag  Tag transmits ID, plus data „ Reader captures data  Reader sends data to computer  Computer determines action  Computer instructs reader  Reader sends data to tag

65 65 ICT Implantes no Corpo Humano ICT = Information and Communication Technologies Dispositivos Implantáveis que podem ser categorizados como: –médico –não-médico Ambos podem ser: –passivos –ativos Reversíveis ou não reversíveis Stand-alone ou online ICT implantes e tags

66 66 Dispositivos ICT Médicos Passivos Implantáveis Most passive implants are structural devices such as –artificial joints –vascular implants –artificial valves Active medical implantable devices Directive 90/385/EEC

67 67 Inplantes médicos ICT ativos Cardiovascular pacers for patients with conduction disorders or heart failure Cochlear and brainstem implants for patients with hearing disorders Deep brain stimulation –for tremor control in patients with Parkinson's disease –for essential tremor –for obsessive-compulsive disorders Implantable Neurostimulation Devices –Spinal cord stimulation for chronic pain management –Sacral nerve stimulation for control of urinary incontinence –Vagus nerve stimulation (VNS) for seizure control in epilepsy and mood control in severe depression cases Implantable programmable drug delivery pumps Intrathecal administration of Baclofen for patients with Multiple Sclerosis with severe spasticity Insulin pump for Diabetes

68 68 Implantes médicos ICT futuros Artificial vision: –Cortical implant for the blind: bypassing the non-working retina or optic nerve BioMEMS: Micro Electro-Mechanical Systems / Biosensors on the order of size of a human red blood cell –collect data about the physiological parameters, communicate with an external diagnostic computer system (drug release, blood analysis, recovering cancer patients…) Direct Brain Control: BCI (Brain Computer Interfaces): BrainGate™: www.cyberkineticsinc.com www.cyberkineticsinc.com Memory BrainChip (artificial hippocambus) an implantable brain chip could restore or enhance memory

69 69 Codificação de ´barras´ para Seres Humanos The VeriChip™ What? RFID=Radio Frequency Identification Device Passive ID tag Contains an unique ID number How does it work? Energized by a scanner (RF) Emits a radio signal Transmits ID number to a Database via phone or Internet Current applications (FDA approval in 2004) Medical records (blood type, potencial allergies, medical history) Personal information Financial information

70 70 Verichip VeriChip™ is a subdermal, radio frequency identification (RFID) device, about the size of a grain of rice. This technology, developed by Applied Digital Solutions (ADS), one US-based company, has been used in animals for years and seems fairly harmless. Extending the use to the human population is the next step. The idea for employing the tags to identify humans came after the horror of the Sept. 11, 2001, attacks on the World Trade Centre and the Pentagon. The chip is an ID tag which is passive (not independently powered). When radio-frequency energy passes from a scanner, it energizes the chip, and which then emits a radio-frequency signal transmitting the chip's information to the reader, which in turn links with a database.

71 71 Dispositivos de Rastreamento Pessoal Futuros Integration and miniaturization of three technologies: www.digitalangel.comwww.digitalangel.com –Biosensor: read a person‘s vital signs by touching the skin (implanted into a wristwatch) –Pager device: takes the data from the biosensor by using a cellular packet module –Position location technology: using radio signal to stay in contact with a person‘s pager device -> this information is sent through cellular data packets to a data centre (Digital Angel™) -> The first Digital Angel was launched in November 2001 -> Medical emergency purposes -> Identification/Location purposes

72 72 Perguntas? Mais informações Prof. Dr. Sergio Takeo Kofuji Sergio.kofuji@poli.usp.br


Carregar ppt "1 Computação Pervasiva IFSC, 03 de Julho 2005 Prof. Dr. Sergio Takeo Kofuji, EPUSP."

Apresentações semelhantes


Anúncios Google