Departamento de Engenharia Química e Engenharia de Alimentos

Slides:



Advertisements
Apresentações semelhantes
Ecologia Numérica Aula 4: Modelagem da dinâmica bacteriana
Advertisements

FERMENTAÇÕES E RESPIRAÇÃO CELULAR
Patrícia Rosa de Araujo
Fotossíntese e Respiração Celular
CRESCIMENTO BACTERIANO
Cinética Microbiana.
CRESCIMENTO E METABOLISMO BACTERIANO
Bioprocessos Aula 2.
Prof. Waldemar Ernani Martins
Respiração Celular.
ORGANELAS CITOPLASMÁTiCAS Profº. CLAUDIO GIOVANNINI
Metabolismo microbiano
Crescimento Microbiano
Fisiologia microbiana: nutrição e crescimento
Metabolismo Microbiano
Crescimento Microbiano
COLÉGIO NOSSA SENHORA DE FÁTIMA
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
Ser heterótrofo: ser que não produz seu próprio alimento.
Metabolismo Energético Celular
Respiração Aeróbia Respiração = síntese de ATP envolvendo cadeia respiratória; Pode ser de 2 tipos: aeróbia (utilizando o O2) ou ANAeróbia (outras substâncias);
TRATAMENTO DE ESGOTOS PELO PROCESSO DE LODOS ATIVADOS
Reino Monera Prof. M. Sc. Fábio Henrique Oliveira Silva fabio
Fotossíntese.
Metabolismo energético
AULA 07 FOTOSSÍNTESE E RESPIRAÇÃO.
GLICÓLISE UNIVERSIDADE FEDERAL DE ALAGOAS CAMPUS ARAPIRACA
Utilização dos materiais que chegam às células
Biologia e Geologia – 10º Ano
Metabolismo Energético da Célula
Transformação e utilização de energia pelos seres vivos
FOTOSSÍNTESE.
A obtenção de energia pela célula
BASES MICROBIOLOGICAS DA CONSERVAÇÃO DOS ALIMENTOS
Tratamento de Águas Residuárias
MITOCÔNDRIA RESPIRAÇÃO CELULAR
Cinética de Processos Fermentativos
FOTOSSÍNTESE.
FUNDAMENTOS DE BIOQUÍMICA
CINÉTICA ENZIMÁTICA UNIVERSIDADE FEDERAL DO PAMPA
Reprodução e crescimento microbiano
Preparo do Inóculo para o Processo Fermentativo Industrial
Parâmetros Gráficos (X, Xo, S, So, P, Po, Xm, Sf, Pm, t, tf) 
CRESCIMENTO MICROBIANO
RESPIRAÇÃO CELULAR PROCESSO DE EXTRAÇÃO DE ENERGIA FIXADA NA MATÉRIA ORGÂNICA (FOTOSSÍNTESE). EXISTEM DOIS TIPOS BÁSICOS: - ANAERÓBIA: NÃO UTILIZA GÁS.
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
METABOLISMO ENERGÉTICO
Cinética Microbiana.
Metabolismo Anabolismo Catabolismo
Formas de condução de um processo fermentativo
Fotossíntese e Respiração Celular
Universidade Estadual de São Paulo Escola de Engenharia de Lorena
Modelagem e Simulação de Processos – Equações Diferenciais
MÉTODOS PARA QUANTIFICAR OS MICRORGANISMOS
Fotossíntese.
Microbiologia aplicada ao tratamento de águas residuárias
METABOLISMO DE CARBOIDRATOS
Utilização dos materiais que chegam às células
Aula: Sistemas de Tratamento Aeróbio
Agitação e aeração Oxigênio na fase gasosa Oxigênio na fase líquida
Bioquímica e Bioprocessos II 3º semestre – Subsequente
Metabolismo Energético PARTE 2
PROCESSOS ENERGÉTICOS: FOTOSSÍNTESE E RESPIRAÇÃO
Anaeróbio Aeróbio Aeróbio sem substratocom substrato Aeróbioslatenteinativoscrescendo Nitrificantes latentecrescendocrescendo se há NH 4 + disponível.
CRESCIMENTO MICROBIANO
Respiração celular.
ESTERILIZAÇÃO Como regra, uma fermentação é conduzida com uma cultura pura de uma linhagem altamente produtora num meio nutriente adequado. Portanto,
CRESCIMENTO MICROBIANO
ANÁLISE DE DADOS As medidas realizadas num biorreator, se usadas adequadamente com equações de definição, balanço global de energia e massa, e modelos.
Transformação e utilização de energia pelos seres vivos Obtenção de energia 1.
Transcrição da apresentação:

Departamento de Engenharia Química e Engenharia de Alimentos Engenharia Bioquímica Cinética Microbiana Paulo Duarte Filho Maio/2006

8 ATP 6 ATP 30 ATP Respiração Anaeróbia CO2 O2 Respiração Aeróbia Hidrólise Glicose Piruvato Produtos de Fermentação ( lactato, álcoois, ácidos, etc.) 8 ATP 6 ATP 30 ATP Ciclo de Krebs Respiração Anaeróbia (CO2, SO42-, NO3-) CO2 O2 Respiração Aeróbia Figura 1: Esquema simplificado de processos aeróbios e anaeróbios

Rendimento Energético Processos aeróbios: oxigênio como aceptor final de elétrons; Processos anaeróbios: Fermentativos: Utilizam produtos da degradação do substrato. Anóxicos: Utilizam compostos inorgânicos. Rendimento Energético Processos aeróbios > Processos anaeróbios

Estudo Cinético Processo obedece ao princípio de conservação da matéria Substrato Fonte de Nitrogênio Elementos minerais: Fósforo, enxofre, cobre, cácio, etc. Síntese Manutenção

Métodos para avaliação de crescimento de microrganismos Fisiologia do microrganismo! Métodos Diretos Determinação da concentração celular Contagem no microscópio; Contagens com cultura; Contagem eletrônica. Não se aplicam a m.o. filamentosos

Figura 2: Contagem em Câmara de Neubauer

Figura 3: Contagem de Células Viáveis em placas

Determinação da biomassa microbiana Matéria seca; Medidas óticas. Figura 4: Separação de células por filtração

Métodos Indiretos Constituintes celulares (ATP, DNA, NADH); Dosagem de elementos do meio de cultura (substrato, consumo de O2, propriedades reológicas do meio de cultura, entre outros.

Processo Fermentativo Fermentador Microrganismo Preparo do inóculo Nutrientes Preparo do meio Esterilização do meio Controles Esterilização do ar Recuperação do produto Ar Tratamento de efluente Produto Resíduo Figura 5: Etapas de um processo fermentativo

Obtenção de uma curva de crescimento para um M.O. Figura 6: Processo para obtenção de uma curva de crescimento

Curva de crescimento Condições favoráveis ao microrganismo Figura 7: Curva típica de crescimento bacteriano

Fase lag Fase intermediária Rearranjo do sistema enzimático (síntese de enzimas); Traumas físicos (choque térmico, radiação, entre outros); Traumas químicos (produtos tóxicos, meio de cultura). Não há variação da concentração de biomassa no tempo, portanto: Xo = concentração celular no tempo t =0 Fase intermediária Aumento gradativo da concentração celular

Fase log ou exponencial Células plenamente adaptadas; Velocidades de crescimento elevadas; Consumo de substrato; Interesse prático. Fase de redução de velocidade Diminuição da concentração de substrato limitante; Acúmulo de produto(s) no meio Fase estacionária Término do substrato limitante; Acúmulo de produtos tóxicos; Concentração celular constante em seu valor máximo.

Fase de declínio Redução do crescimento celular; Consumo de material intracelular (lise). Não só para a concentração celular se dispõe de gráficos, mas também para o consumo de substrato e formação de produto.

Biomassa Concentração (g/L) Produto Substrato Tempo de Cultivo (h) Figura 8: Curvas de biomassa, substrato e produto

Dispondo de um conjunto de dados experimentais de X, S e P em função do tempo tem-se: Crescimento Consumo Formação Não são os melhores parâmetros para se avaliar o estado em que se encontram o sistema.

Velocidades específicas: Crescimento: Consumo de substrato: Formação de produto: Distribuindo os dados da fase exponencial em coordenadas semilogarítmicas, tem-se:

Rearranjando a equação anterior: Como essa fase tem a distribuição de uma reta a velocidade específica de crescimento é constante e máxima. X0i= Concentração celular no instante de início da fase exponencial Rearranjando a equação anterior: Ou, re-escrevendo de outra forma, tem-se:

Fator de conversão de substrato a células Assim, pode-se obter o tempo de duplicação da biomassa, onde X=2X0i: Fator de conversão de substrato a células X0= Concentração celular inicial X= Concentração celular no instante t S0= Concentração inicial do substrato S= Concentração residual do substrato no instante t.

Coeficiente de Manutenção Este parâmetro é importante para a determinação de X em cultivo de fungos filamentosos e em processos de tratamento de efluentes. O fator de conversão pode ser obtido também através de: Coeficiente de Manutenção Velocidade específica de consumo de substrato para manutenção da viabilidade celular

Produtividade Exercícios X0= Biomassa inicial; XF= Biomassa final; TF= Tempo total de cultivo. Exercícios Candida utilis cresce em glicerol com velocidade específica de crescimento máxima de 0,095 h-1. Qual o tempo necessário para esse microrganismo duplicar a sua massa na fase exponencial de crescimento de um processo batelada?

2. Qual a diferença entre respiração e fermentação? 3. Quais os principais elementos químicos de que é composta a célula? 4. Cite exemplos práticos de aplicação industrial de leveduras, bactérias e mofos. 5. Quais os principais substratos utilizados na indústria para processos fermentativos? 6. Em uma fermentação batelada a volume constante foram obtidos os seguintes dados experimentais: T(h) 1 2 3 4 5 6 7 8 9 10 11 12 13 X(g/L) 1.1 1.6 2.5 3.8 5.9 7.9 8.5 9.3 9.6 9.5 Pede-se:

Identificar as diversas fases de crescimento do microrganismo; O tempo que o microrganismo leva para duplicar a sua massa na fase exponencial de crescimento; A produtividade máxima em células que pode ser obtida desse processo