The First Law of Thermodynamics & Cyclic Processes

Slides:



Advertisements
Apresentações semelhantes
Presenter’s Notes Some Background on the Barber Paradox
Advertisements

LASERS.
Chapter Six Pipelining
Chapter Five The Processor: Datapath and Control (Parte B: multiciclo)
Copyright no direito americano: o caso Leslie Kelly v. Arriba Soft Corp. 1.
1 O direito americano A análise das excepções concentra-se no fair use: o direito americano permite a um utilizador exigir o acesso à obra e a sua reprodução.
Aula prática Introdução ao BPMN
Ciência Robert Sheaffer: Prepared Talk for the Smithsonian UFO Symposium, Sept. 6, 1980.
Capacitores Ou, como guardar energia elétrica de forma relativamente simples.
Experiências de Indução.
Meeting 17 Chapter & 6-6.
INTRODUÇÃO Fenômenos de Transporte: estuda como massa, quantidade de movimento, calor e outras formas de energia são transportadas por um meio sólido ou.
Towards a Requirement Analysis Approach for Dependable Law-Governed Systems Maíra Gatti, Gustavo Carvalho May 2nd 2006.
The use of Interaction Laws on Air Traffic Control for Specifying Dependable Interactions Apt 02 03/04/2007 Domain Analysis Rodrigo Paes
Conversation lesson Unit 14 – Poetry/ Song Teacher: Anderson.
DIRETORIA ACADÊMICA NÚCLEO DE CIÊNCIAS HUMANAS E ENGENHARIAS DISCIPLINA: INGLÊS FUNDAMENTAL - NOITE PROFESSOR: JOSÉ GERMANO DOS SANTOS PERÍODO LETIVO
Revisão de Conceitos de Termodinâmica
Cap. 8 – Sistemas de potência a vapor
Trocadores de Calor Prof. Gerônimo.
Fundamentos da teoria dos semicondutores Faixas de energia no cristal semicondutor. Estatística de portadores em equilíbrio. Transporte de portadores.
Vetor da rede recíproca.
Uniform Resource Identifier (URI). Uniform Resource Identifiers Uniform Resource Identifiers (URI) ou Identificador de Recursos Uniforme provê um meio.
Protocolo HTTP.
SECEX SECRETARIA DE COMÉRCIO EXTERIOR MINISTÉRIO DO DESENVOLVIMENTO, INDUSTRIA E COMÉRCIO EXTERIOR BRAZILIAN EXPORTS STATISTICAL DEPURATION SYSTEM Presentation.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 3 Harmonic.
Indirect Object Pronouns - Pronomes Pessoais Complemento Indirecto
OER LIFE CYCLE Andrew Moore and Tessa Welch.
Ecological Economics Lecture 6 Tiago Domingos Assistant Professor Environment and Energy Section Department of Mechanical Engineering Doctoral Program.
Fazendo e Brincando: Confecção de Materiais para as Aulas de Inglês
Aula Teórica 6&7 Princípio de Conservação e Teorema de Reynolds.
Thresholding, Otsu Trabalho 2 - CG.
Definição do MoC Subjacente a Aplicação Prof. Dr. César Augusto Missio Marcon Parcialmente extraído de trabalhos de Axel Jantch, Edward Lee e Alberto Sangiovanni-Vincentelli.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Avaliação Constituição dos grupos de trabalho:
Lecture 4 Pressure distribution in fluids. Pressure and pressure gradient. Hydrostatic pressure 1.
Lecture 2 Properties of Fluids Units and Dimensions 1.
Exemplo 1 – Ciclo Rankine
Curso de Termodinâmica Aplicada
Introdução à Criptografia Moderna – 2ª Lista de Exercícios
Aula 9.
1-Considerações Básicas Sandro R. Lautenschlager Mecânica dos Fluidos Aula 2.
Balanço de Forças e de Quantidade de Movimento
Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa Ontology Building Process: The Wine Domain João Graça, Márcio.
Você já reparou que o clima na Terra está mudando? Já percebeu que a cada ano que passa a temperatura varia bruscamente, independente da estação? Frio.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 5: Harmonic.
Prof. Eng. Alexandre Dezem Bertozzi
Aula Teórica 12 Equação de Bernoulli. Bernoulli’s Equation Let us consider a Stream - pipe such as indicated in the figure and an ideal fluid (without.
Equação da Continuidade e Equação de Navier-Stokes
Lei de Cotas: Looking at the Implementation of the Brazilian Employment Quota in São Paulo, Brazil Anna C. O’Kelly.
RELATÓRIO CEMEC 06 COMPARAÇÕES INTERNACIONAIS Novembro 2013.
Aula Teórica 18 & 19 Adimensionalização. Nº de Reynolds e Nº de Froude. Teorema dos PI’s , Diagrama de Moody, Equação de Bernoulli Generalizada e Coeficientes.
Unit l Verb to be.
Equação de Bernoulli e Equação de Conservação da Energia
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 8: Procedure.
Fundamentos da teoria dos semicondutores
HEY JUDE Hey Jude don't make it bad Hey Jude não piore as coisas Take a sad song and make it better Pegue uma canção triste e a torne melhor.
Aula Prática 5. Fluxes (Problem 1.07) Consider the flow in a rectangular duct, formed by two paralell plates (width b=1m and height 2h= 30cm) where air.
Mecânica de Fluidos Ambiental 2015/2016
Abril 2016 Gabriel Mormilho Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo Departamento de Administração EAD5853 Análise.
Pesquisa Operacional aplicada à Gestão de Produção e Logística Prof. Eng. Junior Buzatto Case 3.
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
Year Automation Conference 2015 Increase pressure for costs reduction - How much? Marcos Assialdi HBR / TGEx.
Gestão de Sistemas Energéticos 2016/2017
Teste e Qualidade de Software
Three analogies to explain reactive power Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to.
Verbs followed by infinitive and gerund- page 24.
Pesquisadores envolvidos Recomenda-se Arial 20 ou Times New Roman 21.
Why Moringa Delight? Perfection in Growing and Processing We produce the highest quality Moringa under perfect growing conditions on the largest Moringa.
Transcrição da apresentação:

The First Law of Thermodynamics & Cyclic Processes Meeting 7 Section 4-1

Thermodynamic Cycle Is a series of processes which form a closed path. The initial and the final states are coincident.

For What Thermodynamics Cycles Are For? Thermal engines work in a cyclic process. A Thermal engines draws heat from a hot source and rejects heat to a cold source producing work

Heat Engine Power Cycles Hot body or source Qin System, or heat engine Wcycle Qout Cold body or sink

Heat Engine Efficiency Hot body or source Cold body or sink System, or heat engine QH QL Wcycle

Refrigerators and heat pumps Hot body or source Cold body or sink System Qout Qin Wcycle REFRIGERATOR HEAT PUMP

Energy analysis of cycles For the cycle, E1 E1 = 0, or 4 3 2 1

Qcycle = Wcycle For cycles, we can write: Qcycle and Wcycle represent net amounts which can also be represented as:

TEAMPLAY A closed system undergoes a cycle consisting of two processes. During the first process, 40 Btu of heat is transferred to the system while the system does 60 Btu of work. During the second process, 45 Btu of work is done on the system. (a) Determine the heat transfer during the second process. (b) Calculate the net work and net heat transfer of the cycle.

TEAMPLAY Win = 45 Btu 2 B Qin=40 Btu Wout=60 Btu A 1

Carnot Cycle The Carnot cycle is a reversible cycle that is composed of four internally reversible processes. Two isothermal processes Two adiabatic processes

Carnot cycle for a gas The area represents the net work TL

P-v Diagram of the Reversed Carnot Cycle TL

The Carnot cycle for a gas might occur as visualized below. TL TH TH TL QL TL

Execution of the Carnot Cycle in a Closed System (Fig. 5-43)

It is always reversible -- a Carnot cycle is reversible by definition. This is a Carnot cycle involving two phases -- it is still two adiabatic processes and two isothermal processes. It is always reversible -- a Carnot cycle is reversible by definition. TL TL TL

Vapor Power Cycles We’ll look specifically at the Rankine cycle, which is a vapor power cycle. It is the primary electrical producing cycle in the world. The cycle can use a variety of fuels.

Question ….. $467,952.27/day $170,801,979/year How much does it cost to operate a gas fired 1000 MW(output) power plant with a 35% efficiency for 24 hours/day for a full year if fuel cost are $2.00 per 106 Btu? $467,952.27/day $170,801,979/year

Question …. $12,998.67/day $4,744,499/year If you could improve the efficiency of a 1000 MW power plant from 35% to 36%, what would be a reasonable charge for your services? Let’s assume $2.00 per million BTUs fuel charge and 24 hr/day operation. $12,998.67/day $4,744,499/year

Vapor-cycle Power Plants

We’ll simplify the power plant

Carnot Vapor Cycle Low thermal efficiency compressor and turbine must handle two phase flows

Carnot Vapor Cycle The Carnot cycle is not a suitable model for vapor power cycles because it cannot be approximated in practice.

Rankine Cycle The model cycle for vapor power cycles is the Rankine cycle which is composed of four internally reversible processes: constant-pressure heat addition in a boiler, isentropic expansion in a turbine, constant-pressure heat rejection in a condenser, and isentropic compression in a pump. Steam leaves the condenser as a saturated liquid at the condenser pressure.

Refrigerator and Heat Pump Objectives The objective of a refrigerator is to remove heat (QL) from the cold medium; the objective of a heat pump is to supply heat (QH) to a warm medium

Inside The Household Refrigerator

Ordinary Household Refrigerator

Gas Power Cycle A cycle during which a net amount of work is produced is called a power cycle, and a power cycle during which the working fluid remains a gas throughout is called a gas power cycle.

Actual and Ideal Cycles in Spark-Ignition Engines v v

T-S diagram (Heat Transfer) Otto Cycle qin qout P-V diagram (Work) T-S diagram (Heat Transfer)

Performance of cycle Thermal Efficiency: Need to know QH and QL

Otto Cycle Heat addition 2-3 QH = mCV(T3-T2) Heat rejection 4-1 QL = mCV(T4-T1) or in terms of the temperature ratios Otto Cycle qout qin

1-2 and 3-4 are adiabatic process, using the adiabatic relations between T and V Otto Cycle qout qin

Cycle performance with cold air cycle assumptions This looks like the Carnot efficiency, but it is not! T1 and T2 are not constant. What are the limitations for this expression?

Thermal Efficiency of Ideal Otto Cycle Under cold-air-standard assumptions, the thermal efficiency of the ideal Otto cycle is where r is the compression ratio and k is the specific heat ratio Cp /Cv.

Effect of compression ratio on Otto cycle efficiency k = 1.4

Otto Cycle The thermal efficiency of the Otto Cycle increases with the specific heat ratio k of the working fluid

Brayton Cycle This is another air standard cycle and it models modern turbojet engines.

Brayton Cycle http://www.pwc.ca/en_markets/demonstration.html Proposed by George Brayton in 1870! http://www.pwc.ca/en_markets/demonstration.html

jet engine with afterburner for military applications.

Schematic of A Turbofan Engine

Illustration of A Turbofan Engine

Turboprop burner compressor turbine

Schematic of a Turboprop Engine

Other applications of Brayton cycle Power generation - use gas turbines to generate electricity…very efficient Marine applications in large ships Automobile racing - late 1960s Indy 500 STP sponsored cars

An Open-Cycle Gas-Turbine Engine

A Closed-Cycle Gas-Turbine Engine

Brayton Cycle The ideal cycle for modern gas-turbine engines is the Brayton cycle, which is made up of four internally reversible processes: isentropic compression, constant pressure heat addition, isentropic expansion, and constant pressure heat rejection.

Turbojet Engine Basic Components and T-s Diagram for Ideal Turbojet Cycle

P-v and T-s Diagrams for the Ideal Brayton Cycle

Brayton Cycle 1 to 2--isentropic compression in the compressor 2 to 3--constant pressure heat addition (replaces combustion process) 3 to 4--isentropic expansion in the turbine 4 to 1--constant pressure heat rejection to return air to original state

Brayton Cycle Because the Brayton cycle operates between two constant pressure lines, or isobars, the pressure ratio is important. The pressure ratio is not a compression ratio.

Brayton cycle analysis Let’s assume cold air conditions and manipulate the efficiency expression:

Brayton cycle analysis Using the isentropic relationships, Let’s define:

Brayton Cycle Because the Brayton cycle operates between two constant pressure lines, or isobars, the pressure ratio is important. The pressure ratio is just that--a pressure ratio. A compression ratio is a volume ratio (refer to the Otto Cycle).

Brayton Cycle The pressure ratio is Also

Brayton cycle analysis Then we can relate the temperature ratios to the pressure ratio: Plug back into the efficiency expression and simplify:

What does this expression assume? Ideal Brayton Cycle What does this expression assume?

Thermal Efficiency of Brayton Cycle Under cold-air-standard assumptions, the Brayton cycle thermal efficiency is where rp = Pmax/Pmin is the pressure ratio and k is the specific heat ratio. The thermal efficiency of the simple Brayton cycle increases with the pressure ratio.

Brayton Cycle k = 1.4

Thermal Efficiency of the Ideal Brayton Cycle

Evaporação a pressão constante Um sistema pistão cilindro contêm, inicialmente, três kg de H2O no estado de líquido saturado com 0.6 MPa. Calor é adicionado, vagarosamente, a água fazendo com que o pistão se movimente de tal maneira que a pressão seja constante. Quanto de trabalho é realizado pela água? Quanta energia deve ser transferida para a água de tal maneira que ao final do processo ela esteja no estado de vapor saturado? Fronteira do Sistema Representação do processo

processo a pressão const. Primeira Lei: 1Q2 – 1W2 = U2 – U1 mas o trabalho 1W2 = Patm*(V2-V1), Logo 1Q2 = (P2V2+U2)-(P1V1+U1) = H2-H1 Onde h2 é a entalpia do vapor saturado e h1 é a entalpia do líquido. Na tabela 1-2 termodinâmico para 0.6MPa, tem-se que h2 = 2756,8 KJ/kg e h1 = 670,56 KJ/kg. Considerando 3kg de H2O, então o calor transferido será de 3*(2756-670) = 6259 KJ.

Resfriamento com Gelo Seco 0.5 kg de gelo seco (CO2) a 1 atm é colocado em cima de uma fatia de picanha. O gelo seco sublima a pressão constante devido ao fluxo de calor transferido pela picanha. Ao final do processo todo CO2 está no estado de vapor (foi completamente sublimado). Determine a temperatura do CO2 e quanto de calor ele recebeu da picanha. Representação do processo Fronteira do Sistema

Resfriamento com Gelo Seco – processo a pressão const. Primeira Lei: 1Q2 – 1W2 = U2 – U1 mas o trabalho 1W2 = Patm*(V2-V1), Logo 1Q2 = (P2V2+U2)-(P1V1+U1) = H2-H1 Onde h2 é a entalpia do vapor saturado e h1 é a entalpia do sólido. No diagrama termodinâmico para Patm, tem-se que h2 = 340 KJ/kg e h1 = -220 KJ/kg. Considerando 0.5kg de CO2, então o calor transferido será de 280 KJ. A temperatura de saturação do CO2 será de 175K (-98 oC)

LIQUID VAPOR SOLID

Solução de Exercícios Cap 4

Ex4.13) 1000K 300K W 100KJ Ciclo de Carnot W=? Qc=?

Ex4.14)

Ex4.15) WT>0 Turbina Qh>0 (5000) Qc<0 (3500) Condensador Caldeira Bomba WT>0 Qc<0 (3500) Wb<0 Qh>0 (5000) Qmeio<0 (500)

Ex4.16) P2 T s P1>P2 550ºC 30ºC

Ex4.17) 1 2 3 4 Qh=+180kW Aquecedor 1000ºC Compressor Turbina W<0 Condensador Turbina Compressor 1 2 4 3 QL=-110kW W>0 W<0 1000ºC 100ºC

Rendimento Máximo -> Rendimento de Carnot Ciclo Brayton Conhecer Pressões