Carregar apresentação
A apresentação está carregando. Por favor, espere
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
PublicouBrenda Lalama Alterado mais de 11 anos atrás
1
Separatrizes As separatrizes são medidas de posição que permitem calcularmos valores da variável que dividem ou separam a distribuição em partes iguais. Temos quatro tipos de separatrizes, também chamadas de quantis: a mediana, que é também uma medida de tendência central; os quartis; os decis; e os percentis.
2
Separatrizes 1.Quartis (Qi): dividem um conjunto de dados em quatro partes iguais. Assim: Q1:1ºquartil, deixa 25% dos elementos antes do seu valor. Q2:2ºquartil, deixa 50% dos elementos antes do seu valor. Coincide com a mediana. Q3:3ºquartil, deixa 75% dos elementos antes do seu valor.
3
Separatrizes Genericamente, para determinar a ordem ou posição do quartil a ser calculado, usaremos a seguinte expressão: , onde i= nº do quartil a ser calculado n= nº de observações.
4
Separatrizes Para dados agrupados em classes, encontraremos os quartis de maneira semelhante à usada para o cálculo da mediana: onde: l=limite inferior da classe que contém o quartil desejado. h=amplitude do intervalo de classe EQi=elemento quartílico Fant=frequência acumulada absoluta da classe anterior à classe quartílica. fi=frequência absoluta simples da classe quartílica.
5
Separatrizes 2.Decis (Di): dividem um conjunto de dados em dez partes. Assim: De maneira, para calcular os decis, recorremos à expressão que define a ordem em que o decil se encontra Para dados agrupados em classes, encontraremos os decis de maneira semelhante à usada para cálculo da mediana e dos quartis.
6
Separatrizes 3.Centis (Ci): são as medidas que dividem a amostra em 100 partes iguais. Assim: O elemento que definirá a ordem do centil será encontrado pelo emprego da expressão: onde i=nº identificador do centil n=nº total de observações Para dados agrupados em classes, encontraremos os centis de maneira semelhante à utilizada para cálculo da mediana, dos quartis e dos decis.
7
MODA b.1) Moda: A moda é definida como o valor mais frequente do conjunto de dados. É a medida de tendência central menos importante. Sua vantagem é que pode ser usada para variáveis qualitativas. amodal; unimodal; bimodal; plurimodal.
8
MODA Ex1: Temos uma amostra de 10 crianças de 5 anos de idade, com dados referentes a seus pesos (em kg): 23,0 20,0 22,0 19,0 25,0 28,2 24,0 21,0 27,0 21,0 Mo = 21,0 kg Ex2: Encontre a estatura modal das crianças com base nos dados abaixo. Estatura (m): 1,21 1,05 1,01 1,32 1,40 1,25 1,27 1,19 1,05
9
MODA b.2) Moda para dados agrupados em classes: Para dados agrupados em classes a moda pode ser obtida por três procedimentos. Trabalharemos apenas com a moda bruta. Moda Bruta: A moda bruta é simplesmente o ponto médio da classe de maior freqüência absoluta simples. Ex1: para a tabela das notas dos alunos encontre a nota modal.
Apresentações semelhantes
© 2025 SlidePlayer.com.br Inc.
All rights reserved.