A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

A TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Apresentações semelhantes


Apresentação em tema: "A TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO"— Transcrição da apresentação:

1 A TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

2 Na Grécia antiga, entre os anos de 180 a. C. e 125 a. C
Na Grécia antiga, entre os anos de 180 a.C. e 125 a.C., viveu Hiparco, um matemático que construiu a primeira tabela trigonométrica. Esse trabalho foi muito importante para o desenvolvimento da Astronomia, pois facilitava o cálculo de distâncias inacessíveis, o que lhe valeu o título de PAI DA TRIGONOMETRIA.

3 Mais tarde, no primeiro século da era cristã, Ptolomeu da Alexandria escreveu uma coleção de livros conhecida como Almajesto, que significa “o maior”. Nela aparece uma tabela trigonométrica mais completa que a de Hiparco. Foram muito importantes as contribuições de Ptolomeu para a Trigonometria estudada nos dias atuais.

4 ASTROLÁBIO 45º Distância da terra
Você já parou para imaginar como os navegadores da antiguidade faziam para calcular a que distância da terra eles encontravam-se enquanto navegavam?

5 ASTROLÁBIO TEODOLITO ONTEM HOJE
Um dos mais antigos instrumentos científicos, que teria surgido no século III a.C. A sua invenção é atribuída ao matemático e astrônomo grego Hiparco. Instrumento geodésico, que serve para levantar plantas, medir ângulos reduzidos ao horizonte e as distâncias zenitais.

6 USANDO ÂNGULOS PARA MEDIR ALTURAS
Com a ajuda de um transferidor e de um canudinho de refrigerante podemos medir o ângulo necessário para calcular alturas como a de um prédio, de uma árvore ou uma torre. Esse ângulo é chamado ÂNGULO DE ELEVAÇÃO.

7 SENO COSSENO TANGENTE

8 SENO cateto oposto hipotenusa cateto oposto sen  = hipotenusa

9 COSSENO hipotenusa cateto adjacente  cateto adjacente cos  =

10 TANGENTE cateto oposto cateto adjacente  cateto oposto tg  =

11 Razões Trigonométricas no Triângulo Retângulo
cateto oposto sen  = hipotenusa cateto adjacente cos  = hipotenusa cateto oposto tg  = cateto adjacente

12 RAZÕES TRIGONOMÉTRICAS Prof. Giovani

13 Construindo um teodolito
O teodolito é um instrumento muito usado na engenharia para medir ângulos.

14 Você pode construir um teodolito, fixando um extremo de um fio no centro de um transferidor e o outro extremo em um peso:

15 Para entender como se usa esse aparelho, imagine que você alinhe a base do transferidor com o topo de um prédio e que o fio estacione sobre a marca 60º da escala. Desse modo, você pode concluir que seu raio visual forme 60º com a vertical e 30º com a horizontal

16 EXEMPLOS EXPICATIVOS

17

18

19

20 A TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO
Autoria e Produção: Prof. Eduardo V. Gaudio modificações feitas por José Camilo Chaves Bibliografia: BIANCHINI, Edwaldo; Miani, Marcos. Construindo conhecimentos em Matemática: 8ª série. 1. ed. São Paulo: Moderna, 2000. GIOVANNI, José Ruy; PARENTE, Eduardo. Aprendendo Matemática: 8ª série. 1. ed. São Paulo: FTD, 1999. SOUZA, Maria Helena; SPINELLI, Walter. Matemática: 8ª série. 1. ed. São Paulo: Ática, 1999.


Carregar ppt "A TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO"

Apresentações semelhantes


Anúncios Google