A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos)

Apresentações semelhantes


Apresentação em tema: "Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos)"— Transcrição da apresentação:

1 Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos)
UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil 2151 – CONCRETOS ESPECIAIS CONCRETO PROJETADO Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos)

2 CONCRETO PROJETADO FONTE:
Luiz Roberto Prudêncio Jr., Concreto projetado. Concreto, Ensino, Pesquisa e Realizações, São Paulo, Ed. Geraldo Cechella Isaia, IBRACON, 2005, pp

3 CONCRETO PROJETADO Definição: “concreto com dimensão máxi-ma de agregado superior a 4,8 mm, transportado por uma tubulação e projetado, sob pressão, em elevada velocidade, sobre uma superfície, sendo compactado simultaneamente.”

4 CONCRETO PROJETADO É usado principalmente no revestimento de obras subterrâneas e taludes e no reparo de estruturas, por dispensar o uso de fôrmas e proporcionar grande velocidade nas opera-ções de lançamento e adensamento do concreto.

5 CONCRETO PROJETADO Reflexão: relação em massa do concreto que não adere e a massa total lançada à superfície de projeção. Isso faz com que o concreto aplicado difere do concreto que abasteceu a máquina de projeção. Primeiro equipamento concebido em 1908, para construir réplicas de animais pré-históricos (museu em Chicago).

6 CONCRETO PROJETADO Construído em 1912 um reservatório de água de 24 m de diâmetro (argamassa projetada). Em 1947 surgiram primeiras máquinas a rotor, similar aos equipamentos atuais. Surgiram primeiros equipamentos via úmida, onde o concreto é pré-misturado com água, e após é projetado.

7 CONCRETO PROJETADO Evolução a partir de 1962: materiais e equipamentos. Materiais: sílica ativa, metacaulim, fibras de aço e sintéticas (náilon e polipropileno), cimentos, aditivos aceleradores e redutores de água (plastificantes e super). Equipamentos: automação (robôs) e siste-mas computadorizados.

8 PROCESSOS DE PROJEÇÃO Via seca e Via úmida.
Via seca: aglomerante e agregados são misturados e lançados na máquina de projeção. A introdução da água ocorre no bico de projeção. Via úmida: aglomerante, agregados e água são misturados previamente ao abasteci-mento na máquina de projeção.

9 Via Seca Equipamentos: máquinas a rotor.
Cimento e agregados são introduzidos na cuba, caem preenchendo uma câmara do rotor em movimento, recebe ar comprimido que a pressuriza. O material segue para o mangote. Na ponta do bico é introduzida a água com aditivo, controlada pelo “mangoteiro”.

10 Via Seca Ajuste de ar e água é empírico. Por isso exige-se “mangoteiro” experiente. Distância do alvo: 1,5 m. Ajuste da água: a maior quantidade possível (aumenta a resistência do concreto à compressão). Motivo: melhor adensamento, que expulsa o ar e compensa maior relação a/c.

11 Via Seca Projeção perpendicular ao alvo, para reduzir reflexão e aumentar compacidade do concreto. Projeção com movimentos circulares ou pendulares.

12 Via Seca Vantagens: - projetar a longas distâncias da máquina (melhor abastecimento da máquina); concreto mais resistente e compacto (melhor controle da água durante o processo de aplicação); bom para revestimento primário devido à flexibilidade do processo.

13 Via Seca Desvantagens:
- alto nível de reflexão (10 a 35 % paredes verticais, 20 a 50 % teto); formação de poeira; qualidade muito dependente da experiên-cia da mão-de-obra; concreto tende a ser mais heterogêneo.

14 Via Úmida Dominante na Europa. Uso crescente no Brasil, devido ao aditivo superplastificante – concretos de grande compacidade e resistência à compressão (50 MPa). Uso em revestimentos secundários de túneis devido à baixa reflexão (< 10 %) e alta produtividade com robôs.

15 Via Úmida Equipamentos: de fluxo denso e fluxo aerado.
Fluxo denso: bombas a pistão - concreto lançado na cuba é transportado dentro do mangote pela bomba. O ar comprimido e o aditivo são injetados no bico de projeção. Comprimento do mangote de 80 a 100 m. Reflexão baixa: < 5 %.

16 Via Úmida Fluxo aerado: bombas a rotor – difere do via seca apenas pelo concreto lançado na bomba ser plástico. Permite via seca também. Para não ocorrerem entupimentos e pulsações: mangotes com comprimento < 30 m, evitar curvas no percurso.

17 Materiais Cimento: qualquer tipo. ARI muito utilizado no Brasil.
Cimentos muito finos podem ser benéficos na via úmida (maior coesão) e prejudiciais na via seca (reagem com a umidade da areia e o tempo de utilização diminui).

18 Materiais Agregados: resistentes, limpos e não alongados.
ACI 506-R-90 indica três faixas granulo-métricas. Dimensão máxima < 10, 12 e 19 mm. Graduação com 12 mm é a mais utilizada. Via Úmida no Brasil: areia (MF = 2,4 a 3,2) e pedrisco com 9,5 mm.

19 Materiais Aditivos: imprescindível.
Redutores na via úmida (teor de argamassa elevado – requer mais água). Aceleradores na via seca e úmida para aplicação em paredes verticais e tetos. Resistência mais rápida para túneis.

20 Ensaios/Normas Moldada placa 60 x 60 x 16 cm para extração de cp testemunhos. Ensaio de consistência pela agulha de Proctor – para controlar a consistência do concreto projetado. Feito imediatamente após a projeção do concreto, e em intervalos. Determinação da evolução das resistências a baixas idades pelo penetrômetro de profun-didade constante

21 Ensaios/Normas Determinação da evolução das resistências a baixas idades pelo penetrômetro de energia constante. Diversas normas brasileiras – consultar.

22 Métodos de Dosagem Via seca: não é um concreto plástico, de modo que suas propriedades não depen-dem tanto de a/c, e sim mais da compacidade. Via úmida: características muito seme-lhantes ao concreto convencional. a/c é fundamental.

23 Métodos de Dosagem Dosar um concreto projetado é buscar o atendimento dos requisitos básicos de projeto – resistência à compressão e trabalhabilidade (consistência de proje-ção) – a um custo mínimo, sem, no entanto, esquecer as características exigidas pelo equipamento de projeção nem as do próprio processo, como a reflexão.

24 Métodos de Dosagem – Via Seca
Cinco etapas: 1) Composição dos agregados e definição do teor de argamassa ideal a) determinar a proporção relativa entre areias (duas) e brita que melhor se enquadre nas faixas prescritas pelo ACI 506-R-90 (ver Quadro 1).

25 Métodos de Dosagem – Via Seca
b) projetar uma placa-teste, com equipamen-to e mão-de-obra reais, com traço piloto (1:4 – cimento:agregados), conforme NBR (1994). Avaliar reflexão, textura superficial, determinar consistência pela agulha de Proctor (valores entre 2,5 e 5 MPa), determinar água/mat.secos por secagem em frigideira (NBR 13044, 1994).

26 Métodos de Dosagem – Via Seca
Se reflexão > 20 % (NBR 13354) ou textura muito grosseira, aumentar teor de argamassa e/ou quantidade de areia mais fina, e repetir tudo.

27 Métodos de Dosagem – Via Seca
2) Moldagem das placas para construção do diagrama de dosagem moldar duas placas-teste com traços 1:3 e 1:5, com água/mat.secos constante; extrair 3 cp testemunhos (D = 75 mm) por ensaio de resistência (7 e 28 dias).

28 Métodos de Dosagem – Via Seca
3) Construção do diagrama de dosagem e determinação do traço preliminar com resultados dos ensaios de resistência, construir o diagrama de dosagem.

29 Métodos de Dosagem – Via Seca
Fig. 8

30 Métodos de Dosagem – Via Seca
b) fazer os ajustes necessários para considerar os efeitos do aditivo acelerador na resistência de dosagem (há fórmula para isso); c) entrar no diagrama e determinar m preliminar correspondente.

31 Métodos de Dosagem – Via Seca
4) Estudo do efeito do aditivo acelerador com o traço preliminar moldar mais três placas com três teores de aditivo acelerador; extrair cp para ensaios (7 e 28 dias);

32 Métodos de Dosagem – Via Seca
c) nas placas, monitorar a evolução das resistências iniciais e construir gráfico. Fig. 9

33 Métodos de Dosagem – Via Seca
5) Determinação do traço final com gráfico de resistências iniciais (Fig. 9), determinar o teor mínimo de aditivo; Verificar, via fórmulas, se o teor de aditivo atende às necessidades de resistência aos 7 e 28 dias).

34 Métodos de Dosagem – Via Úmida
O tipo de equipamento empregado influencia decisivamente nas característi-cas da mistura no estado fresco. No caso de fluxo aerado empregam-se concretos com abatimentos maiores (entre 14 e 22 cm), para facilitar preenchimentos das câmaras do rotor.

35 Métodos de Dosagem – Via Úmida
No caso de fluxo denso (bombas a pistão), a propriedade fundamental é a coesão para evitar a segregação dentro do mangote. Fatores importantes no fluxo denso: teor de argamassa, presença de adições, curva granulométrica e forma dos grãos dos agregados. Possível trabalhar com abatimentos menores (entre 8 e 12 cm).

36 Métodos de Dosagem – Via Úmida
1) Estabelecimento do consumo de cimento da mistura e definição do traço piloto Há necessidade de finos para facilitar o bombeamento (cimento entre 400 a 500 kg/m3). a) partir do traço piloto 1:3,7:0,5 (cimento:agregados:água);

37 Métodos de Dosagem – Via Úmida
b) trabalhar com duas areias e uma brita, e atender faixas do ACI 506-R-90 (buscar granulometria uniformemente distribuída para fluxo denso, para facilitar bombea-mento); c) fazer concreto com aditivo plastifi-cante, e ajustar se necessário para alcançar abatimento para bombeamento. Moldar cp.

38 Métodos de Dosagem – Via Úmida
Alterar para aditivo superplastificante se necessário. Ajustar coesão (alterando proporção entre areias, e/ou substituir parte do cimento por material fino (sílica ativa, metacau-lim, etc.).

39 Métodos de Dosagem – Via Úmida
2) Produção das misturas adicionais necessárias à construção do diagrama de dosagem a) com mesmo traço fazer duas novas misturas variando a/c (0,4 e 0,6) e aditivo plastificante. Moldar cp e ensaiar;

40 Métodos de Dosagem – Via Úmida
3) Construção do diagrama de dosagem e determinação do traço preliminar a) no diagrama, determinar a/c; Fig. 10

41 Métodos de Dosagem – Via Úmida
4) Estudo do efeito do aditivo acelerador e da projeção a) com traço preliminar moldar três placas com diferentes teores de aditivo acelera-dor, e monitorar as resistências iniciais; O aditivo deve endurecer o concreto minutos após a projeção, e garantir o não desplacamento das camadas de concreto recém-lançadas.

42 Métodos de Dosagem – Via Úmida
5) Determinação do traço final Com a quantidade mínima de aditivo acelerador e a resistência de dosagem correspondente, tira-se a/c no diagrama de dosagem, bem como o teor de aditivo plastificante. Podem ser necessários pequenos ajustes no campo.

43 Obras e Pesquisas Revestimentos em túneis na segunda pista da Imigrantes; Túnel sob a Av. Faria Lima; Vários outros.


Carregar ppt "Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos)"

Apresentações semelhantes


Anúncios Google