A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aprendizagem de Máquina - Agrupamento Ricardo Prudêncio.

Apresentações semelhantes


Apresentação em tema: "Aprendizagem de Máquina - Agrupamento Ricardo Prudêncio."— Transcrição da apresentação:

1 Aprendizagem de Máquina - Agrupamento Ricardo Prudêncio

2 Clustering (Agrupamento) Particionar objetos em clusters de forma que: Objetos dentro de um cluster são similares Objetos de clusters diferentes são diferentes Descobrir novas categorias de objetos de uma maneira não-supervisionada Rótulos de classes não são fornecidos a priori

3

4 Clustering - Etapas Representação Padrões (Vetores) Redução da dimensionalidade Seleção ou extração de características Clustering Cluster A Cluster B Cluster C Objetos Similaridade Objetos Partição

5 Tipos de Clustering Algoritmos Flat (ou Particional) Geram partição plana, i.e. não existe relação hierárquica entre os clusters Algoritmos Hierárquicos Geram uma hierarquia de clusters, i.e. cada cluster é associado a um cluster-pai mais genérico Vantagem: diferentes visões dos dados

6 Tipos de Clustering Hard Cada objeto pertence exclusivamente a um único grupo na partição Fuzzy Cada objeto está associado a um cluster com certo grau de pertinência Partição Fuzzy pode ser convertida facilmente para uma partição hard

7 Tipos de Clustering Incremental Partição é atualizada a cada novo objeto observado Em geral, apenas um número pequeno de clusters é modificado Não-incremental Partição é gerada de uma única vez usando todos os objetos disponíveis

8 Algoritmo K-Means

9 Algoritmo k-Means Algoritmo particional baseado em Otimização do Erro Quadrado Conjunto de Objetos Partição i-ésimo objeto do cluster j centróide do cluster j

10 Algoritmo k-Means Encontra de forma interativa os centróides dos clusters d1d1 d2d2 Centróide A

11 Algoritmo k-Means Clusters definidos com base nos centróides (centro de gravidade, ou o ponto médio dos cluster: Alocação dos objetos nos clusters feita com base na similaridade com o centróide até critério de parada

12 Algoritmo k-Means Passo 1: Defina k centróides iniciais, escolhendo k objetos aleatórios; Passo 2: Aloque cada objeto para o cluster correspondente ao centróide mais similar; Passo 3: Recalcule os centróides dos clusters. Passo 4: Repita passo 2 e 3 até atingir um critério de parada e.g. até um número máximo de iterações ou; até não ocorrer alterações nos centróides (i.e. convergência para um mínimo local da função de erro quadrado)

13 k-Means (Exemplo com K=2) Inicializar centróides Alocar objetos Computar centróides x x Realocar objetos x x x x Computar centróides Realocar objetos Convergiu!

14 Algoritmo k-Means O k-Means tende a gerar clusters esféricos Assim pode falhar para clusters naturais com formas mais complexas Exemplo -->

15 Algoritmo k-Means O k-Means é popular pela facilidade de implementação, e eficiência no tempo O(nK), onde n é o número de objetos e K é o número de clusters Comentários: Não adequado para atributos categóricos Sensível a outliers e ruído Converge para mínimos locais Desempenho do algoritmo é dependente da escolha dos centróides iniciais

16

17 Algoritmo k-Medoid Similar ao k-Means mas cada cluster é representado por um objeto que realmente existe (medoid) Medoid é o objeto do grupo cuja similaridade média com os outros objetos possui o valor máximo Comentários: Tolerante a outliers e adequado para atributos categóricos Porém, custo mais alto

18 Algoritmos Hierárquicos

19 Geram uma partição onde os clusters são organizados em uma hierarquia Permite ao usuário ter diferentes visões dos objetos sendo agrupados

20 A B C D E F G X1X1 X2X2 Dendrograma

21 Tipos de Algoritmos Hierárquicos Algoritmos Hierárquicos Divisivos ou Particionais Assumem estratégia top-down Iniciam com cluster mais geral que é progressivamente dividido em sub-cluster Algoritmos Hierárquicos Aglomerativos Assumem estratégia bottom-up Iniciam com clusters específicos que são progressivamente unidos

22 Algoritmos Hierárquicos Divisivos Passo 1: Inicie alocando todos os documentos em um cluster; Passo 2: A partir da estrutura existente de grupos, selecione um cluster para particionar; Em geral, o maior cluster, ou o cluster menos homogêneo Passo 3: Particione o grupo em dois ou mais subgrupos; Passo 4: Repita os passos 2 e 3 até que um critério de parada seja verificado e.g., até atingir um número desejado de grupos

23 Algoritmos Hierárquicos Divisivos Bi-Secting k-Means Uso do algoritmo k-Means na etapa de divisão dos clusters Clusters são sucessivamente particionados em 2 sub- clusters Complexidade: O(n log(n))

24 Algoritmos Hierárquicos Aglomerativos Passo 1: Inicie alocando cada documento como um cluster diferente; Passo 2: Selecionar o par de clusters mais similares entre si e os agrupe em um cluster mais geral; Passo 3: Repita o passo 2 até a verificação de um critério de parada e.g., até que todos os documentos sejam agrupados em um único cluster Complexidade: O(n2 log(n))

25 Algoritmos Hierárquicos Aglomerativos Algoritmos variam conforme a maneira de medir similaridade entre dois clusters Single-Link: definida como a máxima similaridade entre os membros dos clusters Complete-Link: definida como a mínima similaridade entre os membros dos clusters Average-Link: definida como a média da similaridade entre os membros dos clusters

26 Single Link Similaridade entre clusters: Efeito: Produz clusters mais alongados (efeito cadeia)

27 Single Link - Exemplo

28 Complete Link Similaridade entre clusters: Efeito: Produz clusters mais coesos e compactos

29 Complete Link - Exemplo

30 Single Link Complete Link Single-Link conecta pontos de classes diferentes através de uma cadeia de pontos com ruído (*) Single Link X Complete Link

31 Complete-Link não é capaz de identificar cluster de pontos (1) Single Link X Complete Link

32 Average-Link Similaridade entre clusters: Efeito: Equilíbrio entre clusters coesos e flexíveis Em alguns contextos (e.g., clustering de texto) tem se mostrado mais eficaz

33 Algoritmo Aglomerativo Baseado em Centróides Similaridade entre clusters é definido como a similaridade entre seus centróides x

34 Algoritmos Hierárquicos Resumo: Os algoritmos hierárquicos divisivos são menos custosos que os aglomerativos Dentre os aglomerativos, o Average-Link funciona melhor em algumas aplicações Desempenho pode ser melhorado através da combinação de técnicas

35 Referências Jain, A. K., Murty, M. N., and Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys, 3(31):264– 323.Data clustering: a review Xu, R. and Wunsch II, D. (2005). Survey of Clustering Algorithms, IEEE Trans. on Neural Networks, 16(3): Survey of Clustering Algorithms Jiang, D., T., Tang, and Zhang, A. (2004). Cluster Analysis for Gene Expression Data: A Survey, IEEE Trans. on Knowledge and Data Engineering, 16(11).Cluster Analysis for Gene Expression Data: A Survey


Carregar ppt "Aprendizagem de Máquina - Agrupamento Ricardo Prudêncio."

Apresentações semelhantes


Anúncios Google