A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aprendizado Bayesiano

Apresentações semelhantes


Apresentação em tema: "Aprendizado Bayesiano"— Transcrição da apresentação:

1 Aprendizado Bayesiano
Disciplina: Sistemas Inteligentes

2 Aprendizagem Bayesiana
Fornece probabilidades para suas respostas Permite combinar facilmente conhecimento a priori com dados de observação Métodos práticos e bem sucedidos para aprendizagem Aprendizagem Bayesiana Ingênua Aprendizagem de Redes Bayesianas

3 Teorema de Bayes Calcula a probabilidade de diferentes hipóteses a medida que novas evidências são observadas. Seja h : hipótese e D: evidência Objetivo: Calcular P(h/D) P(h /D) = P(D / h)P(h) P(D) P(h): probabilidade a priori de h P(D): probabilidade a priori de D P(D/h): probabilidade de observar D dado que h aconteceu

4 Exemplo: Classificar Risco - Seguradora de Veículos
Hipóteses: {risco=alto; risco=baixo} Probabilidades a priori: P(risco = alto) = 0.2 P(risco = baixo) = 0.8 Clientes: sexo = masculino, ou sexo = feminino Pergunta: Qual a probabilidade a posteriori? Qual a P(risco = alto | sexo = M) ? Qual a P(risco = alto | sexo = F) ?

5 Exemplo: Classificar Risco - Seguradora de Veículos
Evidência ‘sexo = M’: P(risco = alto) = 0.2 P(sexo = M) = 0.6 P(sexo = M / risco = alto) = 0.7 P(risco = alto | sexo = M) = P(sexo = M / risco = alto) * P(risco = alto) = P(sexo = M) = 0.7 * 0.2 / 0.6 = 0.23 P(risco = baixo|sexo=M) = 1 – 0.23 = 0.77 P(h /D) = P(D / h)P(h) P(D)

6 Exemplo: Classificar Risco - Seguradora de Veículos
Evidência ‘sexo = F’: P(risco = alto) = 0.2 P(sexo = F) = 0.4 P(sexo = F / risco = alto) = 0.3 P(risco = alto | sexo = F) = P(sexo = F / risco = alto) * P(risco = alto) = P(sexo = F) = 0.3 * 0.2 / 0.4 = 0.1 P(risco = baixo|sexo=F) = 1 – 0.1 = 0.9 P(h /D) = P(D / h)P(h) P(D)

7 Escolha das Hipóteses Geralmente, existe um espaço de hipóteses (H), e deseja-se a hipótese (hH) mais provável, observados os dados de treinamento (D) Hipótese de máxima a posteriori hMAP Hipótese de máxima verossimilhança hML (supondo que P(hi)=P(hj))

8 Aprendizagem pelo Método da Força Bruta
Para cada hipótese h  H, calcule a probabilidade a posteriori Escolha a hipótese hMAP de maior probabilidade à posteriori

9 Aprendizagem pelo Método da Força Bruta
Suponha que D é o conjunto de exemplos D = {(x1, f(x1)),  (xm, f(xm))} Cálculo de P(D/h) P(D/h) = 1, se h é consistente com D (ou seja f(xi) = h(xi), (x1, f(xi)) D) P(D/h) = 0, caso contrário

10 Aprendizagem pelo Método da Força Bruta
Escolha P(h) sob a hipótese de distribuição uniforme  h  H P(D) = onde VSH,D é subconjunto de hipóteses de H consistentes com D |VSH,D| |H|

11 Aprendizagem pelo Método da Força Bruta
Cálculo da probabilidade a posteriori: Se h é inconsistente com D Se h é consistente com D P(h/D) = P(D/h)P(h) = 0 * P(h) = 0 P(D) P(D) |VSH,D| |H| 1 P(h/D) = P(D/h)P(h) = 1 * = P(D)

12 Exemplo: Método da Força Bruta
Considere H = {h1, h2, h3, h4} h1: risco = alto, h2: risco = baixo h3: se sexo = M então risco = alto senão risco = baixo h4: se sexo = M então risco = baixo senão risco = alto Considere exemplo: D1 = {sexo = M, risco = alto} Então VSH,D1 = {h1, h3}, P(h1|D1) = P(h3|D1) = 0.5 e P(h2|D1) = P(h4|D1) = 0 Considere exemplo: D2 = {sexo = F, risco = baixo} Então VSH,{D1,D2} = {h3}, P(h3|{D1,D2}) = 1 e P(h1|{D1,D2}) = P(h2|{D1,D2}) = P(h4|{D1,D2}) = 0

13 Evolução das Probabilidades a Posteriori
P(h) P(h|D1) P(h|D1,D2) hipóteses (a) (b) (c) em (a) todas as hipóteses tem a mesma probabilidade em (b) e (c) a medida que novos exemplos são adquiridos, a probabilidade a posteriori das hipóteses inconsistentes se tornam nulas, enquanto que a probabilidade a posteriori das hipóteses que restaram no espaço de versões aumenta

14 Método da Força Bruta – Observações
Na prática: só funciona quando o conceito verdadeiro está contido no espaço de hipóteses funciona com dados sem ruído No cálculo da probabilidade P(h/D) pode se levar em consideração erro obtido pela hipótese h no conjunto D o tamanho da hipótese

15 Classificador Bayesiano Ótimo
Dada uma nova instância x, qual é a sua classificação mais provável? hMAP(x) nem sempre é a classificação mais provável Considere três hipóteses: P(h1/D) = 0.4, P(h2/D) = 0.3 e P(h3/D) = 0.3 Dada uma nova instância x a ser classificada como alto (+) ou baixo (-): Suponha: h1(x) = +, h2(x) = - e h3(x) = - A classificação mais provável de x?

16 Classificador Bayesiano Ótimo
Se a possível classificação do novo exemplo pode ser qualquer vj  V, a probabilidade de que a classificação correta seja vj Classificação Bayesiana ótima

17 Classificador Bayesiano Ótimo
Exemplo P(h1/D) = 0.4, P(-/h1) = 0, P(+/h1) = 1 P(h2/D) = 0.3, P(-/h2) = 1, P(+/h2) = 0 P(h3/D) = 0.3, P(-/h3) = 1, P(+/h3) = 0 Portanto e

18 Classificador Bayesiano Ingênuo
Suponha uma função de classificação f: X  V, onde cada instância x é descrita pelos atributos {a1, , an} O valor mais provável de f(x) é

19 Classificador Bayesiano Ingênuo
Calcular P(vj) a partir dos dados de treinamento é fácil, o problema é calcular a probabilidade P(a1,..., an | vj) Suposição Bayesiana Ingênua: ou seja, as variáves são a1,..., an independentes Classificador Bayesiano Ingênuo (NB): ) ( / , max arg j n 1 V v MAP P a L Î =

20 Classificador Bayesiano Ingênuo
Estimativa das Probabilidades P(vj) e P(ai/vj) através das freqüências relativas P’(vj) e P’(ai/vj) Para cada vj P’(vj)  estimativa de P(vj) Para cada valor ai de cada atributo a P’(ai/vj)  estimativa de P(ai/vj) Classificador de novas instancias(x)

21 Classificador Bayesiano Ingênuo: Exemplo
Dia Tempo Temp Humid. Vento Jogar D1 Sol Quente Alta Fraco Não D2 Sol Quente Alta Forte Não D3 Coberto Quente Alta Fraco Sim D4 Chuva Normal Alta Fraco Sim D5 Chuva Frio Normal Fraco Não D6 Chuva Frio Normal Forte Não D7 Coberto Frio Normal Forte Sim D8 Sol Normal Alta Fraco Não D9 Sol Frio Normal Fraco Sim D10 Chuva Normal Normal Fraco Sim D11 Sol Frio Alta Forte ? P(Sim) = 5/10 = 0.5 P(Não) = 5/10 = 0.5 P(Sol/Sim) = 1/5 = 0.2 P(Sol/Não) = 3/5 = 0.6 P(Frio/Sim) = 2/5 = 0.4 P(Frio/Não) = 2/5 = 0.4 P(Alta/Sim) = 2/5 = 0.4 P(Alta/Não) = 3/5 = 0.6 P(Forte/Sim) = 1/5 = 0.2 P(Forte/Não) = 2/5 = 0.4 P(Sim)P(Sol/Sim) P(Frio/Sim) P(Alta/Sim) P(Forte/Sim) = = P(Não)P(Sol/Não)P(Frio/Não) P(Alta/Não) P(Forte/Não) = =  Jogar_Tenis (D11) = Não

22 Algoritmo Bayesiano Ingênuo: Dificuldades
Suposição de independência condicional quase sempre violada, mas funciona surpreendentemente bem O que acontece se nenhuma das instancias classificadas como vj tiver o valor ai?

23 Algoritmo Bayesiano Ingênuo: Dificuldades
Solução típica n é o número de exemplos para os quais v = vj nc número de exemplos para os quais v = vj e a = ai p é a estimativa à priori para P’(ai/vj) m é o peso dado à priori (número de exemplos “virtuais”)

24 Exemplo: Classificação de Documentos
Classificar documentos em duas classes vj = {‘interesse’, ‘não-interesse} Variáveis a1,..., an são palavras de um vocabulário e P’(ai/vj) é a freqüência com que a palavra ai aparece entre os documentos da classe vj P’(vj) = número de documentos da classe vj número total de documentos

25 Exemplo: Classificação de Documentos
P’(ai/vj) = nij + 1 nj + |Vocabulário| onde nj é o número total de palavras nos documentos da classe vj e nij é o número de ocorrências da palavra ai nos documentos da classe vj. Usa-se m = |Vocabulário| e p = 1/ |Vocabulário| (assumindo que cada palavra tem a mesmo probabilidade de ocorrência)

26 Exemplo: Classificação de Documentos
Classificação Final: Observação: nem sempre a ocorrência de uma palavra independe das outras palavras. Exemplo: ‘Inteligência’ e ‘Artificial’.

27 Redes Bayesianas Uma Rede Bayesiana é um grafo acíclico e dirigido onde: Cada nó da rede representa uma variável aleatória Um conjunto de ligações ou arcos dirigidos conectam pares de nós cada nó recebe arcos dos nós que tem influência direta sobre ele (nós pais). Cada nó possui uma tabela de probabilidade condicional associada que quantifica os efeitos que os pais têm sobre ele

28 Exemplo Tempestade Ônibus de Turismo Fogo no Acampamento Raio
Trovão Fogo na floresta Raio T,O T,O T, O T, O FA FA Fogo no Acampamento Distribuição de Probabilidade: P(FA/T,O)

29 Aprendizagem de Redes Bayesianas
Variantes da tarefa de aprendizagem A estrutura da rede pode ser conhecida ou desconhecida O conjunto de treinamento pode fornecer valores para todas as variáveis da rede ou para somente algumas Se a estrutura é conhecida e todas as variáveis observadas Então é tão fácil como treinar um classificador Bayesiano ingênuo

30 Aprendizagem de Redes Bayesianas
Suponha a estrutura conhecida e variáveis parcialmente observáveis Exemplo, observa-se fogo na Floresta, Tempestade, Ônibus de turismo, mas não Raio, Fogo no Acampamento Aprende-se a tabela de probabilidades condicionais de cada nó usando o algoritmo do gradiente ascendente O sistema converge para a rede h que maximiza localmente ln (P(D/h))

31 Exemplo Tempestade Ônibus de Turismo Fogo no Acampamento Raio
Trovão Fogo na floresta Raio T,O T,O T, O T, O FA ? ? ? ? FA ? ? ? ? Fogo no Acampamento Distribuição de Probabilidade: P(FA/T,O)

32 Gradiente Ascendente para
Redes Bayesianas Seja wijk uma entrada na tabela de probabilidade condicional para a variável Yi na rede wijk = P(Yi = yij/Predecessores(Yi) = lista uik de valores) Exemplo, se Yi = Fogo no Acampamento, então uik pode ser {Tempestade = T, Ônibus de Turismo = O} Aplicar o gradiente ascendente repetidamente Atualizar todos os wijk usando os dados de treinamento D Normalizar os wijk para assegurar e

33 Aprendizagem da Estrutura de Redes Bayesianas
Métodos baseados em Busca e Pontuação Busca no espaço de estruturas Cálculo das tabelas de probabilidade para cada estrutura Definição da medida de avaliação (Pontuação) Ex.: Minimum Descrition Length (MDL) Operadores de busca (adição, remoção ou reversão de arcos da rede) Processo de busca prossegue enquanto a pontuação de uma rede for significativamente melhor que a anterior Ex: K2(Cooper e Herskovits, 1992)

34 Aprendizagem da Estrutura de Redes Bayesianas
Métodos baseados em análise de dependência Arcos são adicionados ou removidos dependendo de um teste de independência condicional entre os nós Teste de independência pode ser feito entre pares de nós ou com um conjuntos maior de variáveis condicionais Ex: CDL(Chen, Bell e Liu 1997)

35 Aprendizagem da Estrutura de Redes Bayesianas
Métodos baseados em Busca e Pontuação Vantagem: Menor complexidade no tempo Desvantagem: Não garante encontrar melhor solução Métodos baseados em análise de dependência Vantagem: Sob certas condições, encontra a melhor solução Desvantagem: Teste de independência com uma quantidade muito grande de variáveis pode se tornar inviável

36 Conclusões Aprendizado Bayesiano pode ser usado para determinar as hipóteses mais prováveis dado um conjunto de exemplos Fornece algoritmos que podem ser usados na prática Classificador Bayesiano Ingênuo Redes Bayesianas

37 Bibliografia Russel, S, & Norvig, P. (1995). Artificial Intelligence: a Modern Approach (AIMA) Prentice-Hall. Pages , Mitchell, T. & (1997): Machine Learning, McGraw-Hill. Cap.6 Fayyad et al. (1996): Advances in knowledge discovery and data mining, AAAI Press/MIT Press. Cap.11 Pearl, J. (1988) Probabilistic Reasoning in Inteligent Systems


Carregar ppt "Aprendizado Bayesiano"

Apresentações semelhantes


Anúncios Google