A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Planejamento Rodrigo Barros de Vasconcelos Lima Tópicos Avançados em Inteligência Artificial Simbólica CIn - UFPE.

Apresentações semelhantes


Apresentação em tema: "Planejamento Rodrigo Barros de Vasconcelos Lima Tópicos Avançados em Inteligência Artificial Simbólica CIn - UFPE."— Transcrição da apresentação:

1 Planejamento Rodrigo Barros de Vasconcelos Lima Tópicos Avançados em Inteligência Artificial Simbólica CIn - UFPE

2 Roteiro Introdução  Problemas de Planejamento  Linguagens de Representação de Planejamento STRIPS ADL Algoritmos de Planejamento  Planejamento com Busca no Espaço de Estado Busca Para Frente Busca Para Trás  Planejamento com Busca no Estado de Planos Planejamento de Ordem Parcial (POP)  Planejamento Dirigido por Grafo Planejamento no Mundo Real  Tempo, Escalonamento e Recursos

3 Introdução Tarefa de escolher uma seqüência de ações que atinjam um determinado objetivo São representados por estados, ações e objetivos A princípio serão estudados ambientes de planejamento clássicos:  Totalmente observáveis  Deterministas  Finitos  Estáticos  Discretos (tempo, ações, objetos e efeitos)

4 Problemas de Planejamento Agente baseado em busca é um agente planejador simples !!! O que acontece quando esse tipo de agente se depara com problemas mais complexos?  Não sabe lidar com a existência de ação irrelevantes  Dificuldade para encontrar uma boa função de heurística  Não é capaz de tirar vantagem da decomposição de problemas Existem outras técnicas para planejamento que permitem melhor desempenho em problemas do mundo real

5 STRIPS: STanford Research Institute Problem Solver Linguagem suficientemente expressiva (e restrita) para representação de problemas de planejamento clássicos Estados:  Conjunções de literais, sem funções, instanciados da lógica da 1 a ordem  Ex,  Rich  Famous, At(Plane1, Melbourne) Objetivos:  Estado parcialmente especificado  Conjunção de literais positivos, sem funções, da lógica da 1 a ordem  Ex.: Rich  Famous, At(Plane1, Melbourne) Restrição sobre a presença de funções garante que qualquer esquema de ação possa ser proposicionalizado !

6 STRIPS: STanford Research Institute Problem Solver Ações definidas por nome, precondição e efeito:  Nome: Literal positivo, sem função, da lógica da 1 a ordem  Precondição: Literal positivo, sem função, da lógica da 1 a ordem  Efeito: Literal (positivo ou negativo), sem função, da lógica da 1 a ordem  Ex.: Action (Fly(p, from, to), PRECOND: At(p,from)  Plane(p)  Airport(from  Airport(to) EFFECT:  At(p,from)  At(p,to) ) Semântica de todas as fórmulas lógica com hipótese do mundo fechado !

7 Semântica de STRIPS Uma ação é aplicável em qualquer estado que satisfaça suas pré- condições  Ex.: Fly(P1, JFK, SFO) aplicável ao estado: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  Airport(SFO) Resultado da execução de uma ação aplicável a:  Literais positivos do efeito da ação a são adicionados ao novo estado s’  Literais negativos são removidos de s’  Ex.: estado após execução de Fly(P1, JFK, SFO): At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  Airport(SFO)

8 Exemplo: STRIPS Init( At(C1, SFO)  At(C2, JFK)  At(P1, SFO)  At(P2, JFK)  Cargo(C1)  Cargo(C2)  Plane(P1)  Plane(P2)  Airport(JFK)  Airport(SFO) ) Goal( At(C1, JFK)  At(C2, SFO)) Action( Load(c, p, a), PRECOND: At(c, a)  At(p, a)  Cargo(c)  Plane(p)  Airport(a) EFFECT:  At(c, a)  In(c, p) ) Action( Unload(c, p, a), PRECOND: In(c, p)  At(p, a)  Cargo(c)  Plane(p)  Airport(a) EFFECT: At(c, a)   In(c, p) ) Action (Fly(p, from, to), PRECOND: At(p, from)  Plane(p)  Airport(from)  Airport(to) EFFECT:  At(p, from)  At(p, to) )

9 ADL: Action Description Language STRIPSADL Apenas literais positivos nos estados Literais Positivos e Negativos nos estados Hipótese do mundo fechadoHipótese do mundo aberto Efeito P   Q: adicionar P e apagar Q Efeito P   Q: adicionar P e apagar  Q e apagar  P e Q Apenas proposições nos objetivosVariáveis quantificadas Objetivos são conjunçõesObjetivos podem ser conjunções e/ou disjunções Efeitos são conjunçõesEfecitos condicionais permitidos: When P:E Não suporta igualdadeSuporta igualdade Não suporta tiposSuporta tipos Ex.: Action( Fly(p : Plane, from : Airport, to : airport), PRECOND: At(p, from)  (from  to) EFFECT:  At(p, from)  At(p, to) ).

10 Roteiro Introdução  Problemas de Planejamento  Linguagens de Representação de Planejamento STRIPS ADL Algoritmos de Planejamento Algoritmos de Planejamento  Planejamento com Busca no Espaço de Estado Busca Para Frente Busca Para Frente Busca Para Trás Busca Para Trás  Planejamento com Busca no Estado de Planos Planejamento de Ordem Parcial (POP)  Planejamento Dirigido por Grafo Planejamento no Mundo Real  Tempo, Escalonamento e Recursos

11 Comparação das Abordagens de Resolução de Problemas Problema Resolução de Problema por Meio de Busca Espaço de Estados: Representação em Extensão funcional Busca Problema Planejamento no Espaço de Estado Espaço de Estados: Representação em Intenção da 1 a ordem Busca

12 Planejamento com Busca no Espaço de Estados Abordagem mais simples para resolução de problemas de planejamento Ações em um problema de planejamento especificam tanto os seus efeitos quanto suas pré-condições  Permite realizar busca para frente e para trás: Algoritmos não muito eficientes !

13 Busca Para Frente no Espaço de Estados Também chamado de Planejamento Progressivo Estado Inicial: estado inicial do problema de planejamento Ações Aplicáveis a um estado são aquelas cujas pré-condições são satisfeitas Algoritmos bastante ineficiente  Leva em consideração ações irrelevantes Todas as ações aplicáveis a um estado são consideradas Ex.: ir para igreja para comprar livro  Necessita de uma heurística muito boa

14 Busca Para Trás no Espaço de Estados Também chamado de Planejamento Regressivo Estado Inicial: objetivo do problema de planejamento Leva em consideração apenas ações relevantes:  Ações que geram pelo menos um dos literais do objetivo Ações devem ser consistentes:  Não “desfazem” nenhum literal desejado !

15 Busca Para Trás no Espaço de Estados Algoritmo:  Seja O a descrição do objetivo e A uma ação relevante e consistente, o estado predecessor é gerado da seguinte maneira: Qualquer efeito positivo de A que apareça em O é apagado Cada literal da pré-condição de A é adicionado (caso não exista) Exemplo: O: At(C1, B)  At(C2, B) A: Unload(C1, p, B) Predecessor: In(C1, p)  At(p, B)  At(C2, B)  Cargo(C1)  Plane(p)  Airport(B)

16 Exemplo: Busca no Espaço de Estados At(P1, A) At(P2, A) At(P1, A) At(P2, B) Fly(P2, A, B) Fly(P1, A, B) At(P1, B) At(P2, A) At(P1, B) At(P2, B) At(P1, B) At(P2, A) Fly(P2, A, B) Fly(P1, A, B) At(P1, A) At(P2, B)

17 Heurística para Planejamento com Busca no Espaço de Estados Distância para o objetivo é igual ao número de ações  Custo da ação em STRIPS é tipicamente 1  Encontrar número exato é NP-Hard, mas é possível encontrar boas aproximações Heurística “Lista Negativa Vazia” (empty-delete-list)  Relaxamento do problema original através da remoção de efeitos negativos EX.: A   B =>A  Usar independência de sub-objetivos  Elimina preocupação com interações negativas em sub-planos  Necessário executar um algoritmos de planejamento Na prática, a busca no problema relaxado é rápida o suficiente para justificar sua execução

18 Roteiro Introdução  Problemas de Planejamento  Linguagens de Representação de Planejamento STRIPS ADL Algoritmos de Planejamento Algoritmos de Planejamento  Planejamento com Busca no Espaço de Estado Busca Para Frente Busca Para Trás  Planejamento com Busca no Estado de Planos Planejamento de Ordem Parcial (POP) Planejamento de Ordem Parcial (POP)  Planejamento Dirigido por Grafo Planejamento no Mundo Real  Tempo, Escalonamento e Recursos

19 Comparação das Abordagens de Resolução de Problemas Problema Resolução de Problema por Meio de Busca Espaço de Estados: Representação em Extensão funcional Busca Problema Planejamento no Espaço de Estado Espaço de Estados: Representação em Intenção da 1 a ordem Busca Problema POP Espaço de Planos: Representação em Intenção da 1 a ordem Busca

20 Planejamento de Ordem Parcial Busca para frente e para trás são casos particulares de Busca Totalmente Ordenada  Ações explorados de maneira estritamente seqüencial  Ações críticas para o sucesso ou falha de um plano não são necessariamente as primeiras a serem executadas  Não tiram vantagem da decomposição de problemas Ideal: construir plano independentemente da ordem da sua execução permite  Trabalhar decisões “óbvias” ou cruciais antes comprometimento mínimo É um exemplo da heurística geral de raciocínio com comprometimento mínimo  Prorrogar uma escolha

21 Exemplo: Calçar Sapatos Goal(RightShoeOn  LeftShoeOn) Init ( ) Action (RightShoe, PRECOND: RighSockOn, EFFECT: RightShoeOn) Action (RightSock, EFFECT: RightSockOn ) Action (LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn ) Action (LeftSock, EFFECT: LeftSockOn )

22 Planejador de Ordem Parcial Algoritmo de planejamento capaz de colocar duas ações em um plano sem especificar qual ocorre primeiro Solução representada como um grafo de ações (não uma seqüência!) As ações Start e Finish marcam o início e o fim do plano no espaço de planos parciais Planejamento de ordem parcial pode ser implementado como uma busca no espaço de planos parciais

23 Exemplo: Planos de Ordem Parcial Finish Start LeftSockOnRightSockOn LeftShoeOnRightShoeOn Right Sock Left Sock Right Shoe Left Shoe

24 Exemplo: Planos de Ordem Total Linearização:  Representação da solução em ordem total Start RightSock LeftSock RightShoe Finish LeftShoe Start RightSock LeftSock LeftShoe Finish RightShoe Start LeftSock RightSock RightShoe Finish LeftShoe Start LeftSock RightSock LeftShoe Finish RightShoe Start RightSock RightShoe LeftSock Finish LeftShoe Start LeftSock LeftShoe RightSock Finish RightShoe

25 Algoritmo POP Estados do problema de busca são planos Planos compostos por 4 componentes:  Conjunto de Ações  Restrições de Ordem  Links Causais  Conjunto de Pré-Condições em Aberto

26 Conjunto de Ações Ações que compõe os passos do plano Plano vazio consiste apenas das ações Start e Finish Start:  Nenhuma pré-condição  Efeito em todos os literais no estado inicial do problema Finish:  Nenhum efeito  Pré-condições são os literais que formam objetivo do problema

27 Restrições de Ordem Indica ordem entre as ações: A < B  Ação A precisa ser executada algum momento antes da ação B Descrevem uma ordem parcial adequada Ciclos representam contradições e não podem ser adicionados:  Ex.: A < B e B < A (proibido!)

28 Links Causais A B  Efeito da Ação A é tornar verdadeira a pré-condição p da ação B  Não deve ser cancelado por efeitos de outras ações executadas entre a execução de A e B no POT gerado a partir do POP Ex.: RightSock RightShoe Ação C é conflitante com link causal p se:  C tem efeito  p  C pode acontecer entre A e B de acordo com as restrições de ordem p RightSockOn

29 Conjunto de Pré-Condições em Aberto Pré-condições não satisfeitas por nenhuma ação do plano Planejadores devem reduzir o conjunto a vazio (sem introduzir contradições!!!) Plano consistente: sem ciclos nas restrições de ordem, nem conflitos nos links causais Solução: plano consistente sem nenhum pré-condição em aberto

30 POP x POT Toda linearização de uma solução de ordem parcial corresponde a uma solução de ordem total Noção de executar um plano é estendida em POP:  POP é executado escolhendo-se quaisquer uma das possíveis próximas ações Flexibilidade torna mais fácil combinar subplanos em planos maiores:  Cada subplano pode reordenar suas ações para evitar conflitos com outros planos

31 Formulação de Problemas Plano inicial:  Ações {Start, Finish}  Ordenamento {Start < Finish}  Links { }  Pré-Condições em aberto {todas de Finish} Função sucessora:  Arbitrariamente escolhe uma pré-condição em aberto p e gera planos sucessores consistentes Teste de meta:  Testa se um plano é uma solução (não há nenhuma pré-condição em aberto)

32 Exemplo: Troca de Pneu Init(At(Flat, Axle)  At(Spare, Trunk)) Goal(At(Spare, Axle)) Action(Remove(Spare, Trunk), PRECOND: At(Spare, Trunk) EFFECT:  At(Spare, Trunk)  At (Spare, Ground) ) Action(Remove(Flat, Axle), PRECOND: At(Flat, Axle) EFFECT:  At(Flate, Axle)  At (Flat, Ground) ) Action(PutOn(Spare, Axle), PRECOND: At(Spare, Ground)   At(Flat, Axle) EFFECT:  At(Spare, Ground)  At (Spare, Axle) ) Action(LeaveOvernight, PRECOND: EFFECT:  At(Spare, Ground)   At(Spare, Axle)   At(Spare, Trunk)   At(Flat, Ground)   At(Flat, Axle) )

33 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle)

34 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk)

35 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) LeaveOvernight  At(Flat, Axle)  At(Flat, Ground)  At(Spare, Axle)  At(Spare, Ground)  At(Spare, Trunk)

36 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) LeaveOvernight  At(Flat, Axle)  At(Flat, Ground)  At(Spare, Axle)  At(Spare, Ground)  At(Spare, Trunk) Conflito com Link Causal: Remove(Spare,Trunk) At(Spare,Ground) PutOn(Spare,Axle)

37 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) LeaveOvernight  At(Flat, Axle)  At(Flat, Ground)  At(Spare, Axle)  At(Spare, Ground)  At(Spare, Trunk) LeaveOvernight < Remove(Spare, Trunk)

38 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) LeaveOvernight  At(Flat, Axle)  At(Flat, Ground)  At(Spare, Axle)  At(Spare, Ground)  At(Spare, Trunk)

39 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) LeaveOvernight  At(Flat, Axle)  At(Flat, Ground)  At(Spare, Axle)  At(Spare, Ground)  At(Spare, Trunk) Conflito com Link Causal: Start At(Spare,Trunk) Remove(Spare,Trunk)

40 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) Remove(Flat, Axle) At(Flat, Axle)

41 Continuação Start At(Spare, Trunk) At(Flat, Axle) Finish At(Spare, Axle) PutOn(Spare, Axle) At(Spare, Ground)  At(Flat, Axle) Remove(Spare,Trunk) At(Spare, Trunk) Remove(Flat, Axle) At(Flat, Axle)

42 Planejamento de Ordem Parcial com Variáveis Livres Exemplo: Action(Move(b,x,y), PRECOND: On(b,x)  Clear(b)  Clear(y), EFFECT: On(b,y)  Clear(x)   On(b,x)   Clear(y) ) Pré-condição em aberto:  On(A,B)  Clear(B)  Clear(A) Ação satisfaz pré-condição:  Substituição {b/A, y/B}

43 Planejamento de Ordem Parcial com Variáveis Livres Exemplo: Action(Move(A,x,B), PRECOND: On(A,x)  Clear(A)  Clear(B), EFFECT: On(A,B)  Clear(x)   On(A,x)   Clear(B) ) Variável x livre  Outro exemplo de comprometimento mínimo !  Supondo On(A,D) no estado inicial, temos que {x/D} São necessárias restrições de diferença:  Move(A,x,B) Finish  Ação M com efeito  On(A,z) só gerará conflito se z = B  Então adiciona-se restrição do tipo z  B

44 Heurística Para Planejamento de Ordem Parcial Função de heurística usada para escolher qual plano deve ser refinado Heurística da Variável Mais Restrita pode ser adaptada para POP:  Selecionar pré-condição em aberto que pode ser alcançada pelo menor número de caminhos  Função escolhe primeiro: Pré-condição em aberto que não pode ser alcançada por nenhuma ação Pré-condição em aberto que só pode ser alcançada por um único caminho

45 Roteiro Introdução  Problemas de Planejamento  Linguagens de Representação de Planejamento STRIPS ADL Algoritmos de Planejamento Algoritmos de Planejamento  Planejamento com Busca no Espaço de Estado Busca Para Frente Busca Para Trás  Planejamento com Busca no Estado de Planos Planejamento de Ordem Parcial (POP)  Planejamento Dirigido por Grafo Planejamento no Mundo Real  Tempo, Escalonamento e Recursos

46 Comparação das Abordagens de Resolução de Problemas Problema Resolução de Problema por Meio de Busca Espaço de Estados: Representação em Extensão funcional Busca Problema Planejamento no Espaço de Estado Espaço de Estados: Representação em Intenção da 1 a ordem Busca

47 Comparação das Abordagens de Resolução de Problemas Problema GraphPlan Espaço de Gráfico de Dependência: Representação em Intenção proposicional Busca Problema POP Espaço de Planos: Representação em Intenção da 1 a ordem Busca

48 Planejamento Dirigido por Grafo Todas heurísticas sugeridas anteriormente podem não ser muito precisas Grafo de dependências entre ações e estados é construído para estimar heurísticas melhores Plano pode ser derivado a partir do grafo na forma proposicional Funcionam apenas para problemas na forma proposicional progressiva Consiste em uma seqüência de níveis correspondendo aos passos do plano em ordem progressiva Novos níveis são gerados até que seja alcançado um nível onde dois níveis consecutivos sejam idênticos (nivelamento)

49 Elementos do Gráfico de Planejamento Cada nível é composto por um conjunto de literais e um conjunto de ações Conjunto de Estados:  Valores verdade para todos os literais do estado inicial ou efeitos de ações previamente introduzidas Conjunto de Ações:  Ações cujas precondições são satisfeitas em um dado estado S t

50 Elementos do Gráfico de Planejamento Ações Persistentes:  Verdade de um literal permanece inalterado entre estados Links de Exclusão Mútua (Mutex) entre ações:  Indicam conflitos entre ações de um mesmo nível  Ocorrem quando existe: Efeitos inconsistentes ou Interferência ou Competição por recursos Links de Exclusão Mútua (Mutex) entre literais:  Um literal é a negação do outro  Cada possível par de ações que geram os dois literais são mutuamente exclusivas (Suporte Inconsistente)

51 Exemplo: Planejamento Dirigido por Grafo Init (Have(Cake)) Goal (Have(Cake)  Eaten(Cake)) Action (Eat(Cake) PRECOND: Have(Cake) EFFECT:  Have(Cake)  Eaten(Cake) ) Action (Bake(Cake) PRECOND:  Have(Cake) EFFECT: Have(Cake) )

52 Exemplo: Planejamento Dirigido por Grafo  Eaten(Cake) Have(Cake)  Eaten(Cake) Eaten(Cake)  Have(Cake) Eat(Cake) A0A0 S1S1 Have(Cake) S0S0  Eaten(Cake) Have(Cake) Eaten(Cake)  Have(Cake) Bake(Cake) Eat(Cake) A1A1 S2S2

53 Heurísticas Através do Gráfico de Planejamento Gráfico de planejamento é um rica fonte de informação sobre o problema  Literal que não aparece no último nível não pode ser alcançado por nenhum plano !!! Custo de Nível: custo para atingir um literal  Estimado como o número do nível onde aparece pela primeira vez  Ex.: Have(Cake) – custo 0; Eaten(Cake) – custo 1 Para objetivo formado por conjunções temos três abordagens:  Nível máximo  Soma dos níveis  Nível do conjunto

54 Algoritmo GraphPlan Usado para extrair uma solução do gráfico de planejamento e não apenas uma heurística Alterna entre dois passos:  Extração da solução  Expansão do gráfico repita se todos literais do obj. não mutex no último nível do gráfico então solução = ExtrairSolução(graph, goals) se solução <> falha então retorne solução senão se NenhumaSoluçãoPossivel(graph) entao retorne falha graph = ExpandirGrafico(graph, problem)

55 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Trunk) At(Flat,Axle) LeaveOvernight  At(Flat,Ground)  At(Spare,Ground)  At(Spare,Axle) Remove(Flat,Axle) At(Flat,Ground)  At(Flat,Axle) A0A0 Remove(Spare,Trunk)  At(Spare,Trunk) At(Spare,Ground) S1S1 Remove(Flat,Axle) LeaveOvernight PutOn(Spare,Axle) At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) A1A1 S2S2

56 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0 A0A0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) LeaveOvernight At(Spare,Trunk) At(Flat,Ground)  At(Spare,Trunk)  At(Flat,Ground)  At(Spare,Ground) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Spare,Ground) Remove(Flat,Axle) LeaveOvernight PutOn(Spare,Axle) At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) Remove(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) S1S1 A1A1 S2S2

57 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0 A0A0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) LeaveOvernight At(Spare,Trunk) At(Flat,Ground)  At(Spare,Trunk)  At(Flat,Ground)  At(Spare,Ground) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Spare,Ground) Remove(Flat,Axle) LeaveOvernight At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) Remove(Spare,Trunk) Remove(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) S1S1 A1A1 S2S2 PutOn(Spare,Axle)

58 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0 A0A0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) LeaveOvernight At(Spare,Trunk) At(Flat,Ground)  At(Spare,Trunk)  At(Flat,Ground)  At(Spare,Ground) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Spare,Ground) Remove(Flat,Axle) LeaveOvernight At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) Remove(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) S1S1 A1A1 S2S2 PutOn(Spare,Axle) Remove(Spare,Trunk)

59 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0 A0A0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Trunk) At(Flat,Ground)  At(Spare,Trunk)  At(Flat,Ground)  At(Spare,Ground) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Spare,Ground) Remove(Flat,Axle) LeaveOvernight At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) S1S1 A1A1 S2S2 PutOn(Spare,Axle) Remove(Spare,Trunk) LeaveOvernight Remove(Flat,Axle)

60 Exemplo: Gráfico de Planejamento At(Spare,Trunk) S0S0 A0A0  At(Spare,Axle) At(Flat,Axle)  At(Flat,Ground)  At(Spare,Ground) LeaveOvernight At(Spare,Trunk) At(Flat,Ground)  At(Spare,Trunk)  At(Flat,Ground)  At(Spare,Ground) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Spare,Ground) Remove(Flat,Axle) LeaveOvernight At(Spare,Trunk)  At(Spare,Trunk) At(Flat,Axle)  At(Spare,Axle)  At(Flat,Axle) At(Flat,Ground)  At(Flat,Ground)  At(Spare,Ground) At(Spare,Ground) At(Spare,Axle) Remove(Spare,Trunk) S1S1 A1A1 S2S2 Remove(Flat,Axle) PutOn(Spare,Axle)

61 Roteiro Introdução  Problemas de Planejamento  Linguagens de Representação de Planejamento STRIPS ADL Algoritmos de Planejamento  Planejamento com Busca no Espaço de Estado Busca Para Frente Busca Para Trás  Planejamento com Busca no Estado de Planos Planejamento de Ordem Parcial (POP)  Planejamento Dirigido por Grafo Planejamento no Mundo Real Planejamento no Mundo Real  Tempo, Escalonamento e Recursos

62 Tempo, Escalonamentoe Recursos Planejadores usados no mundo real são muito mais complexos do que os vistos até agora Estendem os conceitos básicos tanto no que diz respeito a linguagem de representação quanto na maneira com que interagem com o ambiente Representação STRIPS diz apenas “como fazer” e não:  Quanto tempo uma ação leva  Quando uma ação ocorre Aplicações de Job Shop Scheduling:  Completar conjunto de tarefas (seqüência de ações)  Cada ação tem uma duração e pode precisar de recursos  Encontrar o escalonamento mais rápido para a execução das tarefa, respeitando restrições de recursos

63 Exemplo: Montagem de Dois Carros Init (Chassis(C1)  Chassis(C2)  Engine(E1, C1, 30)  Engine(E2, C2, 60)  Wheels(W1, C1, 30)  Wheels(W2, C2, 15) Goal (Done(C1)  Done(C2) Action (AddEngine(e, c, m), PRECOND: Engine(e, c, d)  Chassis(c)   EngineIn(c) EFFECT: EngineIn(c)  Duration(d) ) Action (AddWheels(w, c), PRECOND: Wheels(w, c, d)  Chassis(c) EFFECT: WheelsOn(c)  Duration(d) ) Action (Inspect(c), PRECOND: EngineIn(c)  WheelsOn(c)  Chassis(c) EFFECT: Done(c)  Duration(10) )

64 Solução Encontrada Pelo POP AddEngine 1 30 AddEngine 2 60 AddWheels 2 15 AddWheels 1 30 Inspect 1 10 Inspect 2 10 FinishStart

65 Problemas de Escalonamento Tipo de problema de planejamento que especifica quando uma ação deve começar e terminar Deve-se tentar encontrar o Escalonamento mais rápido Método do Caminho Crítico (CPM) determina os possíveis tempos de início e fim das ações  Caminho Crítico: caminho cujo tempo total é maior  Ações no caminho crítico não podem sofrer nenhum atraso Ações fora desse caminho podem sofrer atrasos:  Atraso especificado pelo Tempo Mais Cedo de Início (ES) e pelo Tempo Mais Tarde de Início (LS)  Tolerância Para Início de uma Ação: LS - ES

66 Exemplo: Caminho Crítico [0, 15] AddEngine 1 30 [0, 0] AddEngine 2 60 [60, 60] AddWheels 2 15 [30, 45] AddWheels 1 30 [60, 75] Inspect 1 10 [75, 75] Inspect 2 10 [85, 85] Finish [0, 0] Start Ações no caminho crítico possuem tolerância igual a zero !

67 Escalonamento com Restrição de Recursos Problemas reais de escalonamento são ainda mais complexos devido a presença de restrições sobre recursos  Ex.: é necessário um guindaste para adicionar um motor Representação do problema deve ser incrementada:  Resource: R(k)  Funciona como uma pré-condição e um efeito temporário Recurso re-usável:recurso usado por uma ação mas que se torna disponível após seu término

68 Exemplo: Montagem de Dois Carros Init (Chassis(C1)  Chassis(C2)  Engine(E1, C1, 30)  Engine(E2, C2, 60)  Wheels(W1, C1, 30)  Wheels(W2, C2, 15)  EngineHoists(1)  WheelStations(1)  Inspectors(2) ) Goal (Done(C1)  Done(C2) Action (AddEngine(e, c, m), PRECOND: Engine(e, c, d)  Chassis(c)   EngineIn(c) EFFECT: EngineIn(c)  Duration(d) RESOURCE: EngineHoist(1) ) Action (AddWheels(w, c), PRECOND: Wheels(w, c, d)  Chassis(c) EFFECT: WheelsOn(c)  Duration(d) RESOURCE: WheelStations(1) ) Action (Inspect(c), PRECOND: EngineIn(c)  WheelsOn(c)  Chassis(c) EFFECT: Done(c)  Duration(10) RESOURCE: Inspectors(1) )

69 Exemplo: Restrições de Recursos EngineHoist(1) WheelStations(1) Inspectors(2) AddEngine 1AddEngine 2 AddWheels 1 AddWheels 2 Inspect 2 Inspect

70 Referência Bibliográfica Artificial Intelligence a Modern Approach Stuart Russel – Peter Norving Second Edition  Seções 11.1, 11.2, 11.3, 11.4 e 12.1


Carregar ppt "Planejamento Rodrigo Barros de Vasconcelos Lima Tópicos Avançados em Inteligência Artificial Simbólica CIn - UFPE."

Apresentações semelhantes


Anúncios Google