A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

LUCIANO D. ISAIAS6766746 THAÍS F. VICENTIN7547420 PARADIGMAS DE PROJETOS DE ALGORITMOS.

Apresentações semelhantes


Apresentação em tema: "LUCIANO D. ISAIAS6766746 THAÍS F. VICENTIN7547420 PARADIGMAS DE PROJETOS DE ALGORITMOS."— Transcrição da apresentação:

1 LUCIANO D. ISAIAS THAÍS F. VICENTIN PARADIGMAS DE PROJETOS DE ALGORITMOS

2 O QUE É UM PARADIGMA? Um paradigma é um modelo que fornece e determina a visão que o programador possui sobre a estruturação e execução do programa.

3 PROJETO DE ALGORITMO O projeto de algoritmo requer abordagens adequadas: A forma como um algoritmo aborda o problema pode levar a um desempenho ineficiente. Em certos casos, o algoritmo pode não conseguir resolver o problema em tempo viável. Não existe um paradigma que seja o melhor dentre todos.

4 TIPOS DE PARADIGMAS Recursividade. Tentativa e erro. Divisão e conquista. Programação dinâmica. Algoritmos gulosos. Algoritmos aproximados.

5 RECURSIVIDADE Uma função é dita recursiva quando executa a si mesma, ou seja, dentro de um código, tem a capacidade de chamar um “subcódigo” para ser executado. A recursividade permite descrever algoritmos de formas que utilizem estruturas recursivas, mais claras e concisas, especialmente em problemas complexos.

6 EXEMPLO: QUICKSORT

7 QUICKSORT - PARTICIONAMENTO

8 QUICKSORT – PIOR CASO

9 QUICKSORT – MELHOR CASO

10 QUICKSORT – VANTAGENS E DESVANTAGENS

11 QUANDO NÃO USAR RECURSIVIDADE Algoritmos recursivos são apropriados quando o problema a ser resolvido ou os dados a serem tratados são definidos em termos recursivos. Entretanto, isso não garante que um algoritmo recursivo seja o melhor caminho para resolver o problema. Vejamos dois exemplos ilustrativos de algoritmos para calcular os números da sequência de Fibonacci:

12 ALGORITMO 1: FUNÇÃO RECURSIVA function FibRec (n: integer ) : integer ; begin if n<2 then FibRec := n else FibRec := FibRec(n-1) + FibRec(n-2); end ;

13 ALGORITMO 2 : FUNÇÃO ITERATIVA function FibIter (n: integer ): integer ; var i, k, F: integer ; begin i :=1; F :=0; for k :=1 to n do begin F := i+F; i := F-i; end ; FibIter :=F; end ;

14 COMPLEXIDADES DO ALGORITMO 1 E DO ALGORITMO 2 n FibRec 8 ms1 s2 min21 dias FibIter ½ ms¾ ms1,5 ms

15 TENTATIVA E ERRO Um algoritmo tentativa e erro é aquele que testa exaustivamente todas as possíveis soluções de um problema, de modo a obter a solução desejada. A ideia é decompor o processo em um número finito de subtarefas parciais que devem ser exploradas. O processo geral pode ser visto como um processo de pesquisa ou tentativa que gradualmente constrói e percorre uma árvore de subtarefas.

16 TABULEIRO DE XADREZ

17 TENTA UM PRÓXIMO MOVIMENTO procedure Tenta (i: integer ; x,y: TipoIndice; var q: boolean ); var u, v, k: integer ; q1: boolean ; begin k := 0; {inicializa selecao de movimentos} repeat k := k+1; q1 := false ; u := x+a[k]; v := y+b[k]; if (u in s) and (v in s) then if t[u,v] = 0 then begin t[u,v] := i; if i

18 PASSEIO DE CAVALO NO TABULEIRO DE XADREZ program PasseioCavalo; const N=8; {Tamanho do lado do tabuleiro} type TipoIndice = 1..N; var i, j: integer ; t: array [TipoIndice, TipoIndice] of integer ; q: boolean ; s: set of TipoIndice; a, b: array [TipoIndice] of integer ; {-- Entra aqui o procedimento Tenta do Programa anterior --} begin {programa principal} s := [1,2,3,4,5,6,7,8]; a[1] := 2; a[2] :=1; a[3] :=-1; a[4] :=-2; b[1] := 1; b[2] :=2; b[3] := 2; b[4] :=1; a[5] :=-2; a[6] :=-1; a[7] :=1; a[8] :=2; b[5] :=-1; b[6] :=-2; b[7] :=-2; b[8] :=-1; for i:=1 to N do for j :=1 to N do t[i,j] := 0; t [i,i] :=1; {escolhemos uma casa do tabuleiro} Tenta (2,1,1,q); if q then for i:=1 to N do begin for j :=1 to N do write (t[i,j]:4); writeln ; end else writeln (‘Sem soluçao’); end.

19 QUICKSORT - REORDENAÇÃO

20 DIVISÃO E CONQUISTA Consiste em dividir o problema em partes menores, encontrar soluções para estas partes e combiná-las em uma solução global. Divide-se em 3 fases: 1.Divisão (particionamento) do problema original em sub-problemas similares ao original mas que são menores em tamanho. 2.Resolução de cada sub-problema sucessivamente e independentemente (em geral de forma recursiva). 3.Combinação das soluções individuais em uma solução global para todo o problema.

21 O uso deste paradigma geralmente leva a soluções eficientes e elegantes, em especial quando é utilizado recursivamente. Como exemplo, vamos considerar o problema de encontrar simultaneamente o maior elemento e o menor elemento de um vetor de inteiros.

22 VERSÃO RECURSIVA PARA OBTER O MÁXIMO E O MÍNIMO procedure MaxMin4 (Linf, Lsup: integer ; var Max, Min: integer ); var Max1, Max2, Min1, Min2, Meio: integer ; begin if Lsup – Linf <= 1 then if A[Linf] < A[Lsup] then begin Max := A[Lsup] ; Min := A[Linf] ; end else begin Max := A[Linf] ; Min := A[Lsup]; end else begin Meio := (Linf + Lsup) div 2; MaxMin4 (Linf, Meio, Max1, Min1); MaxMin4 (Meio+1, Lsup, Max2, Min2); if Max1 > Max2 then Max := Max1 else Max := Max2; if Min1 < Min2 then Min := Min1 else Min := Min2; end ;

23 COMPLEXIDADE Seja T uma função de complexidade tal que T(n) é o número de comparações entre os elementos de A, se A tiver n elementos, T(n) = (3n/2) – 2 para o melhor caso, caso médio, e pior caso. Este algoritmo é ótimo.

24 FIM


Carregar ppt "LUCIANO D. ISAIAS6766746 THAÍS F. VICENTIN7547420 PARADIGMAS DE PROJETOS DE ALGORITMOS."

Apresentações semelhantes


Anúncios Google