A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Habitabilidade 1 1.

Apresentações semelhantes


Apresentação em tema: "Habitabilidade 1 1."— Transcrição da apresentação:

1 Habitabilidade 1 1

2 Eixos de pesquisa astrobiológica
História da complexidade cósmica Universo molecular Habitabilidade Sistema Solar Exoplanetas Extremófilos Origens da vida Bioassinaturas Evolução das biosferas Ação humana na Terra e além 2 2

3 Habitability Homes for Life
Conditions for the rising of life (conditions for the development of complexity – complex chemistry, long time spans, critical prebiotic mass) Conditions for the life to survive (against catastrophes of geological or astronomical origin)

4 Three Levels of Habitability
Biophilic Cosmos Galactic Habitable Zone Stellar Habitable Zone

5 On the most basic level The “Goldilocks zone” in planetary systems The Stellar Habitable Zone

6

7 Stellar habitable zone
Main assumptions: Surface H2O for ~ Gyear, geological activity, CO2-H2O-N2 atmosphere, B-field, climate stability, resistance to catastrophes for ~ Gyear R

8 On the intermediate level The “Goldilocks zone” for galaxies The Galactic Habitable Zone or Galaxies as home for life

9 On the most universal (or “multi-universal”) level -The Universe as a “Goldilocks problem”

10 Cosmic Habitability

11 A Biophilic Universe A universe hospitable to life – what we may call a biophilic universe – has to be very special in many ways. The prerequisites for any life – long-lived stars, a period table of elements with complex chemistry, and so on – are sensitive to physical laws and could not have emerged from a Big Bang with a recipe that was even slightly different. Martin Rees Our Cosmic Habitat

12 APENAS SEIS NÚMEROS N = 1036, a razão da força eletromagnética para a força gravitacional entre dois prótons.  = 0.007, medida da intensidade da energia de ligação entre os neutrons e prótons dentro do núcleo atômico.  = 0.3, quantidade de matéria no Universo  = 0.7, quantidade de energia em vácuo no Universo Q = 1/ , medida da profundidade média das flutuações de densidade do Universo D = 3, número de dimensões do espaço

13

14

15

16 A cosmological perspective to search of life in the Universe...
Bennett et al., ApJ Suppl Series 2003 Ωb = 0.04 ΩT Life building blocks come from these components...

17

18

19 Essa abundância relativa de elementos governa as possibilidades de formação de moléculas mais complexas. Sem a presença de uma quantidade adequada de CHON não é possível formar vida como a conhecemos.

20 Qual a Origem dos Elementos Quimicos?
Nucleossíntese primordial é insuficiente Não ultrapassa o numero de massa 8 Produz apenas Hélio, Deutério e Lítio Do Carbono em diante, e necessaria a nucleossíntese estelar! O nascimento das estrelas é essencial para o surgimento do C e da química necessária à vida!!!

21

22 NUCLEOSSÍNTESE PRIMORDIAL

23 NUCLEOSSÍNTESE ESTELAR

24 Supernovas Morte Violenta! Mais de um tipo:
Ia: sistemas binários II: estrelas de alta massa SNII: queima nuclear até Fe Colapso gravitacional Núcleo Þ estrela de neutrons Camadas exteriores Þ supernova O, elementos , C, (Fe), (N) Tempos: Manos (ou anos para as hipernovas primevas) SN1987A (David Malin and the Anglo Australian Observatory)

25

26 Nebulosas Planetárias
O Sol vai morrer assim! Estrelas com massas menores que 8 vezes a massa do Sol Núcleo Þ anã branca Camadas exteriores Þ nebulosa planetária C, N Tempos: até varios Ganos Promovem as condições pré-bióticas.

27

28 Universo Orgânico! 0.5 % da matéria bariônica “visível” está na forma molecular. (Fraser, McCoustra & Willians, 2002, A&G, 43, 2.11). 148 Moléculas detectadas no espaço (~50% orgânicas: CHON).

29 Como as biomoléculas são encontradas?
IR-Telescopes (vibrational lines) Radiotelescopes (rotational lines) VLA Itapetinga, SP

30 Gaseous Pillars – Eagle Nebula
Onde são encontradas as biomoléculas? Gaseous Pillars – Eagle Nebula Key hole Nebula Titan Hale-Bopp Murchinson

31 Galactic Habitability

32

33 Connecting Galaxy Formation to Biophilic Environments
The galaxies are natural blocks (“cells”) from which the Universe is composed The stars occur in galaxies, and they are the responsible for the chemical evolution The galaxies have optimal levels of chemical abundances and radiation fields needed for the rise of the life The early evolution of galaxies are characterized by starbursts, in which dust and molecules are formed, leading to complex chemistry. The first, massive stars, harbored in protogalaxies, synthetize mainly CNO, thus organic chemistry is present in a Universe as young as z=30 at least

34 Galaxies and Habitability Intensive view
Galaxies as laboratories of complex chemistry

35 Example: dusty early spheroids (elliptical galaxies and bulges of spirals) complex chemistry as revealed by PAH lines Spheroids in formation resemble dusty starburts Large amounts of dust produced in Gyr Reprocessing of UV starlight into local FIR Rest-frame FIR redshifted to submm/mm Lines of PAHs (rest-frame MIR) Features at 3.3, 6.2, 7,7, 8.6 and 11.3 m due to C-H and C-C bounds Intensity of the features sets ages for the starburst in the Gyr range

36

37

38 PAH Species in the Model
LINEAR BIPHENIL PERICONDENSATE

39

40 Spitzer Space Telescope

41 PAH WORLD

42 Recent detection of a PANH in the IR Hudgins et al. ApJ, 2005
Caffeine Spitzer detected PANHs in various galaxies, besides our own. First direct evidence for the presence of a prebiotic interesting compound in space. Presence of N is essential in biologically interesting compounds (clorophyle). The presence of a planet is no longer necessary for the formation of a PANH.

43 From the RNA World to the Aromatic World

44 Generalized PANH Species

45

46 Detecting PANHs through the 6.2 line

47 Detecting Water through the 6.2 line

48 Galaxies and Habitability Extensive view
Galactic Habitable Zone

49 Galactic Habitable Zone
Defined by PGHZ proportional to the star formation rate conditions for forming rock planets typical long evolutive biological times survival to violent galactic events (e.g. SNe)

50 Lineweaver et al., Science, 303, 59 (2004)
HABITABLE ZONE (68% e 95%)

51 Probability of Forming Rock Planets
Defined by Pmetals Highly Sensitive to the Metallicity* Z *Metals= for astrophysics every element heavier than He Probability of destroying Earths (parameter ZDE) Probability of producing Earths (parameter ZPE) Probability of harboring Earths (PHE=Pmetals)

52

53 Probability of Evolution over Biological Timescales
Defined by Pevol Darwin’s Theory requires long timescales Pevol depends on tevol For Earth tevol = 4 Gyr tevol could be shorter than 4 Gyr?

54 Probability of Survival to Galactic Violent Events
Defined by PSN Normalization to Earth? Pevol depends on past evens through tSN For Earth, tSN = tevol = 4 Gyr Again, tSN could be shorter than 4 Gyr Other Killers: GRBs, GMCs, AGNi

55 Extinction/Innovation of Life on Earth

56

57

58 How frequent are biophilic environments in galaxies?
Estimating through PGHZ comparing several galaxy types Spirals (disks) and Ellipticals (spheroids) Evaluated at several radii. Influence of AGNi ?

59

60 Disk Model Multi-Zone Double Infall Chemical Model Star formation rate
Infall rate (thin disk)

61

62 Galactic Habitable Zone –Earth-Centered Case
Defined by PGHZ Pmetals: ZDE=0.3 ZDE=-1.0 Pev: tev=4Gyr PSN: tSN=4Gyr PSN(2 Nsun)=0.5 normalized to the Sun (r=8 kpc, t=13 Gyr)

63

64

65

66

67

68 Spheroid (Elliptical Galaxy) The Chemodynamical Model
Multi-zone chemical evolution solver + hydrodynamical code Chemodynamical approach chemical evolution of the gas dynamical state of the gas (inflow/outflow) star formation history even after galactic winds spatial variations in age and metallicity Bright Ellipical Galaxy Msun

69

70 Perspectives for Life in an Extragalactic Setting
Disks seem to be biophilic environments In spheroids, conditions are too harsh or too barren In elliptical galaxies, the central regions could be biophilic Care should be taken against to be too earth-centered The inner regions of the Galaxy (between the solar radius and 2 kpc) are biophilic

71 Planetary Habitability

72 Stellar habitable zone
Main assumptions: Surface H2O for ~ Gyear, geological activity, CO2-H2O-N2 atmosphere, B-field, climate stability, resistance to catastrophes for ~ Gyear R Estrelas com “vida longa” Planetas com órbitas estáveis Água no estado líquido Elementos “pesados” – C, N, O, etc. Proteção contra radiação UV

73

74

75 Reasons for habitability on Earth
Liquid water allowed microbes to originate and evolve Moon prevents against chaos in Earth´s rotation axis Plate tectonics replenishes CO2 for life to persist A magnetic field protects from solar wind Evolution of the Atmosphere Microbes made O2, CH4  CH4 then O2 dominated Ozone layer formed at ~ 2.3 Gy Simple algae, fungi developed More O2 and animals at 0.6 Gy Modern humans at 2 My (1/3 of the O2 goes to the brain) Mankind returns CO2 and increases the greenhouse effect 75 75

76

77

78

79


Carregar ppt "Habitabilidade 1 1."

Apresentações semelhantes


Anúncios Google