Genética do grego genno fazer nascer é a ciência dos genes, da hereditariedade e da variação dos organismos.gregociência geneshereditariedade.

Slides:



Advertisements
Apresentações semelhantes
Ácidos Nucléicos São moléculas complexas produzidas pelas células e essenciais a todos os organismos vivos. Estas moléculas governam o desenvolvimento.
Advertisements

O DNA e a Síntese de Proteínas
COMPOSTOS NITROGENADOS DAS CÉLULAS
Prof. Thiago Moraes Lima
Introdução à Genética É a subdivisão da Biologia responsável pelo estudo da transmissão de características hereditárias Teve como precursor: Gregor Mendel.
Estrutura do DNA.
Ácidos Nucleicos O código da Vida.
Professora Marisa Dionísio
Biologia Prof. Fláudio.
DNA – ESTRUTURA, FUNÇÃO E REPLICAÇÃO
O DNA e a Estrutura Molecular do Cromossomo
O gene: herança e evolução
Ácidos Nucléicos.
Genética Molecular: o que vamos estudar?
Duplicação do DNA e Síntese de PROTEÍNAS
Ácidos Nucleicos.
OS ÁCIDOS NUCLÉICOS.
Ácidos Nucléicos.
Há dois tipos identificados de ácidos nucléicos, que são:
Estrutura dos Ácidos Nucléicos
Estrutura dos Ácidos Nucléicos
MATERIAL GENÉTICO E SÍNTESE DE PROTEÍNA
DNA e RNA.
Ácidos nucleicos.
Ácidos Nucléicos.
Núcleo, Cromossomos e Clonagem
ESTRUTURA DO DNA Profº.: Aleksandro Rodrigues.
GENÉTICA MOLECULAR Tanto em organismos procariontes como em organismos eucariontes, qualquer classe de moléculas deve preencher certos requisitos básicos.
das atividades celulares
ÁCIDO DESOXIRRIBONUCLEICO
Alex Silva da Cruz, Msc Aula 4 Ácidos Nucleicos DNA
DNA – RNA – SÍNTESE DE PROTEÍNAS
Profa. Ana Paula Miranda Guimarães
Aulão do ENEM PAULO VÍCTOR
Ácidos nucleicos.
Vocabulário Genético Primeira Fase.
Hereditariedade O que é o ADN? Como é constituído?
Ácidos Nucleicos Estão relacionados ao mecanismo de controle metabólico celular (funcionamento da célula) Ácido desoxirribonucleico (DNA) – Caracteres.
Ácidos Nucléicos.
Biologia Molecular Professora Ana Carolina.
Metabolismo de controle
E.E.E.M. ADOLFO FETTER Ácidos Nucleicos.
Genética: início do século XX.
Hereditariedade.
GENÉTICA CROMOSSOMOS.
Vera Regina Medeiros Andrade
Ácidos nucléicos e síntese proteica
Ácidos Nucléicos São moléculas complexas produzidas pelas células e essenciais a todos os organismos vivos. Estas moléculas governam o desenvolvimento.
Ácidos Nucléicos – DNA e RNA
Biologia Código Genético e Síntese Protéica Código Genético
ÁCIDOS NUCLÉICOS.
Ação Gênica.
Ácidos Nucléicos Molécula de DNA e RNA.
Ácidos Nucléicos.
Ácidos Nucléicos Prof. Marcelo C..
Dogma Central da Biologia Molecular
Profª. Drª Narlize Silva Lira
Introdução à Biologia Molecular
Ácidos Nucléicos – DNA e RNA
BIOLOGIA INTERATIVA Ronnielle Cabral Rolim
Genética A genética é a parte da biologia que estuda a passagem das características biológicas e físicas de geração para geração. Os cientistas acreditam.
DNA / RNA Ácido Desoxirribonucleico Ácido Ribonucleico
CITOGENÉTICA.
Ácidos Nucléicos: DNA e RNA
Ácidos Nucléicos Heloisa Pandolpho. Constituintes: Nucleotídeos: formados por três diferentes tipos de moléculas: um açúcar (pentose): desoxirribose no.
ÁCIDOS NUCLEICOS 1. Um ser humano adulto é formado por 100 biliões de células. do ovo ou zigoto. Todas essas células resultaram do ovo ou zigoto. O ovo.
Aulas Multimídias – Santa Cecília Profª Ana Gardênia.
Preparatório ENEM 2009.
DNA. histórico Pensava-se: proteínas possuíam o material genético. A partir de 1950: ácidos nucléicos possuíam o material genético Nas células procarióticas,
Transcrição da apresentação:

Genética do grego genno fazer nascer é a ciência dos genes, da hereditariedade e da variação dos organismos.gregociência geneshereditariedade

Mendel, o iniciador da genética Gregor Mendel nasceu em 1822, em Heinzendorf, na Áustria. Era filho de pequenos fazendeiros e, apesar de bom aluno, teve de superar dificuldades financeiras para conseguir estudar. Em 1843, ingressou como noviço no mosteiro de agostiniano da cidade de Brünn, hoje Brno, na atual República Tcheca. Após ter sido ordenado monge, em 1847, Mendel ingressou na Universidade de Viena, onde estudou matemática e ciências por dois anos. Ele queria ser professor de ciências naturais, mas foi mal sucedido nos exames. De volta a Brünn, onde passou o resto da vida. Mendel continuou interessado em ciências. Fez estudos meteorológicos, estudou a vida das abelhas e cultivou plantas, tendo produzido novas variedades de maças e peras. Entre 1856 e 1865, realizou uma série de experimentos com ervilhas, com o objetivo de entender como as características hereditárias eram transmitidas de pais para filhos.

Em 8 de março de 1865, Mendel apresentou um trabalho à Sociedade de História Natural de Brünn, no qual enunciava as suas leis de hereditariedade, deduzidas das experiências com as ervilhas. Publicado em 1866, com data de 1865, esse trabalho permaneu praticamente desconhecido do mundo científico até o início do século XX. Pelo que se sabe, poucos leram a publicação, e os que leram não conseguiram compreender sua enorme importância para a Biologia. As leis de Mendel foram redescobertas apenas em 1900, por três pesquisadores que trabalhavam independentemente. Mendel morreu em Brünn, em Os últimos anos de sua vida foram amargos e cheios de desapontamento. Os trabalhos administrativos do mosteiro o impediam de se dedicar exclusivamente à ciência, e o monge se sentia frustrado por não ter obtido qualquer reconhecimento público pela sua importante descoberta. Hoje Mendel é tido como uma das figuras mais importantes no mundo científico, sendo considerado o “pai” da Genética. No mosteiro onde viveu existe um monumento em sua homenagem, e os jardins onde foram realizados os célebres experimentos com ervilhas até hoje são conservados.

Cromossomos podem ser divididos em dois tipos de autossomos e cromossomos sexuais. Certas características genéticas relacionadas com o seu sexo e são transmitidas pelos cromossomas sexuais. Os autossomos contêm o resto da informação genética hereditária. Todos agem da mesma forma durante a divisão celular. Células humanas têm 23 pares de cromossomos nucleares lineares grandes, (22 pares de autossomos e um par de cromossomos sexuais) dando um total de 46 por célula. Além destes, células humanas têm muitas centenas de cópias do genoma mitocondrial. Os 22 autossomos são numerados por tamanho. Os outros dois cromossomos x e Y, são os cromossomos sexuais. Esta imagem de cromossomos humanos alinhados em pares é chamada um cariótipo.

A molécula de DNA é composta por uma fita dupla de nucleotídeos. Existem quatro subunidades de nucleotídeos, e as duas cadeias unem-se através de pontes de hidrogênio entre as bases nitrogenadas dos nucleotídeos. As cadeias de nucleotídeos são formadas por uma pentose (açúcar de cinco carbonos) associada a um ou mais grupos fosfato e a uma base nitrogenada. O DNA é composto por uma desoxirribose e um grupo fosfato. As quatro bases nitrogenadas contidas no DNA são: adenina, citosina, guanina e timina. A cadeia possui duas extremidades, denominadas extremidade 3’ e extremidade 5’. A extremidade 3’ possui um hidroxil e a extremidade 5’, um fosfato. As bases nitrogenadas estão no interior da hélice, ligadas por pontes de hidrogênio. As bases nitrogenadas citosina e timina são chamadas de Pirimidinas, e as bases adenina e guanina, chamadas de Purinas.

Há mais de 50 anos foi descoberto que o DNA é o material que compõe os genes, embora já soubessem que os genes estão nos cromossomos. Quem descobriu o DNA foi um cientista suíço chamado Johann Friedrich Mies Cher, no século XIX. Johann trabalhou com o núcleo de leucócitos retirados do pus de ataduras de ferimentos infeccionados e identificou uma substância desconhecida, que possuía nitrogênio e fósforo na composição. Após algumas pesquisas, ele verificou que esta substância descoberta era ácida e estava presente em todos os núcleos celulares, e que haviam dois tipos de ácidos, uma ribose e uma desoxirribose. Os dois filamentos que compõem o DNA se enrolam, um sobre o outro, formando uma dupla hélice, semelhante um espiral de caderno, podendo ter milhares de nucleotídeos. Como já foi dito, estas duas cadeias mantêm-se unidas por pontes de hidrogênio entre os pares de bases A->T e C->G, formando sempre ma cadeia complementar. Se tivermos uma cadeia com a seguinte seqüência de nucleotídeos AATCTGCAC, a cadeia complementar será TTAGACGTG.

Nos genes estão todas as informações biológicas de um organismo, que devem ser passadas para seus descendentes, ou ate mesmo na produção de células filhas na proliferação celular. A descoberta da dupla hélice permitiu responder muitas perguntas sobre duplicação do DNA e transmissão de genes. Em 1953 o biólogo norte-americano James D. Watson e o físico inglês H.C. Crick propuseram o modelo da dupla hélice do DNA, respondendo que a duplicação ocorre pela formação de uma cadeia complementar a partir da separação das duas fitas, e este processo é chamado de duplicação semiconservativa, pois conserva 50% do DNA da célula mãe, utilizando uma das fitas com molde para a duplicação. Para que essa duplicação ocorra, as pontes de hidrogênio se desfazem para as cadeias se separarem. Após esta separação, que ocorre com a ajuda de enzimas, uma nova cadeia começa a ser formada, chamada cadeia complementar, com a ajuda da enzima DNA-polimerase. A adenina sempre emparelha com a timina, e a guanina sempre emparelha com a citosina na fita de DNA, no RNA a adenina emparelha com a uracila. No final do processo temos duas fitas idênticas. Todos os processos são mediados por enzimas, por exemplo, o desenrolamento da hélice é feito por uma enzima chamada helicase. Todos os genes de um organismo compõem o genoma dele.

Rato que vive 7 vezes mais tem o genoma sequenciado Aparentemente imune a câncer, o rato-toupeira-pelado chega aos 30 anos, enquanto roedores de seu porte têm a expectativa de vida de 4 anos O recém-sequenciado código genético do rato-toupeira- pelado pode guardar o segredo da cura do câncer Mais+

Isaac Zedecc