Part 5: Regression Algebra and Fit 5-1/34 Econometrics I Professor William Greene Stern School of Business Department of Economics.

Slides:



Advertisements
Apresentações semelhantes
Presenter’s Notes Some Background on the Barber Paradox
Advertisements

Chapter Five The Processor: Datapath and Control (Parte B: multiciclo)
Copyright no direito americano: o caso Leslie Kelly v. Arriba Soft Corp. 1.
1 O direito americano A análise das excepções concentra-se no fair use: o direito americano permite a um utilizador exigir o acesso à obra e a sua reprodução.
Chapter 21 Design of Engineering Experiments Chapter 2 – Some Basic Statistical Concepts Describing sample data –Random samples –Sample mean, variance,
Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 1.
Ciência Robert Sheaffer: Prepared Talk for the Smithsonian UFO Symposium, Sept. 6, 1980.
Capacitores Ou, como guardar energia elétrica de forma relativamente simples.
Meeting 17 Chapter & 6-6.
DIRETORIA ACADÊMICA NÚCLEO DE CIÊNCIAS HUMANAS E ENGENHARIAS DISCIPLINA: INGLÊS FUNDAMENTAL - NOITE PROFESSOR: JOSÉ GERMANO DOS SANTOS PERÍODO LETIVO
A.4. Trabalhando com elementos de biblioteca STL – Standard Template Libraby Disponibiliza um conjunto de classes templates, provendo algoritmos eficientes.
Fundamentos da teoria dos semicondutores Faixas de energia no cristal semicondutor. Estatística de portadores em equilíbrio. Transporte de portadores.
Aula 02.
GT Processo Eletrônico SG Documentos Eletrônicos Segunda reunião – 28/08/2009 Interlegis.
Uniform Resource Identifier (URI). Uniform Resource Identifiers Uniform Resource Identifiers (URI) ou Identificador de Recursos Uniforme provê um meio.
SECEX SECRETARIA DE COMÉRCIO EXTERIOR MINISTÉRIO DO DESENVOLVIMENTO, INDUSTRIA E COMÉRCIO EXTERIOR BRAZILIAN EXPORTS STATISTICAL DEPURATION SYSTEM Presentation.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 3 Harmonic.
Indirect Object Pronouns - Pronomes Pessoais Complemento Indirecto
OER LIFE CYCLE Andrew Moore and Tessa Welch.
Ecological Economics Lecture 6 Tiago Domingos Assistant Professor Environment and Energy Section Department of Mechanical Engineering Doctoral Program.
Tópicos Especiais em Aprendizagem Reinaldo Bianchi Centro Universitário da FEI 2012.
Fazendo e Brincando: Confecção de Materiais para as Aulas de Inglês
Thresholding, Otsu Trabalho 2 - CG.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Avaliação Constituição dos grupos de trabalho:
Lecture 4 Pressure distribution in fluids. Pressure and pressure gradient. Hydrostatic pressure 1.
Lecture 2 Properties of Fluids Units and Dimensions 1.
Introdução à Criptografia Moderna – 2ª Lista de Exercícios
The Key to Happiness André Garcia Based on the teachings of Prof. Plinio Corrêa de Oliveira click anywhere on page to continue.
Hoje é domingo, 14 de setembro de 2014 Agora mesmo são 22:54 h. Relaxe por uns momentos e aprecie … Com som Today is Monday, 1 st December Relax.
Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa Understanding Epidemic Quorum Systems INESC-ID Lisbon/Technical.
Faculdade de Ciências Económicas e Empresariais Universidade Católica Portuguesa 15/09/2014Ricardo F Reis 6 th session: Financial Measures.
WG 47 New frontiers of DGA interpretation Reunião Cigré D1 – 24/01/2012 Representantes do D1.01 Brasil: Adriana de Castro Passos Martins – CEMIG Jayme.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 5: Harmonic.
Aula Teórica 12 Equação de Bernoulli. Bernoulli’s Equation Let us consider a Stream - pipe such as indicated in the figure and an ideal fluid (without.
©2011 SAP AG. All rights reserved. Customer Reference Slide One-page snapshot of successful implementation; baseline value collateral deliverable Produced.
Socio-technical approaches for Safety STAMP/STPA
Prof Afonso Ferreira Miguel
Equação da Continuidade e Equação de Navier-Stokes
Chapter 2 Harmonics and Interharmonics Theory
RELATÓRIO CEMEC 06 COMPARAÇÕES INTERNACIONAIS Novembro 2013.
Ambrósio et al e-POSTER Enhanced Screening for Refractive Candidates based on Corneal Tomography and Biomechanics Renato Ambrósio Jr., MD, PhD Ruiz Alonso,
Divisão Serviço da Hora Laboratório Primário de Tempo e Frequência 2010 SIM TFWG Workshop and Planning Meeting March 9 – 12 Lima, Peru. Time Scales Virtual.
Aula Teórica 18 & 19 Adimensionalização. Nº de Reynolds e Nº de Froude. Teorema dos PI’s , Diagrama de Moody, Equação de Bernoulli Generalizada e Coeficientes.
© 2012 Autodesk Autodesk Revit para projetos executivos de arquitetura Módulo 2: Otimizando a modelagem para documentação Tiago Marçal Ricotta Gerente.
VOCÊ JÁ FALA INGLÊS FLUENTEMENTE?
De onde vem a população de baixas inclinações do cinturão de Kuiper? ( Review: Gomes 2009 CMDA 104, )‏ A região do cinturão de Kuiper (40-50 AU)
Equação de Bernoulli e Equação de Conservação da Energia
Faculdade de Ciências Económicas e Empresariais Universidade Católica Portuguesa 17/12/2014Ricardo F Reis 2 nd session: Principal –
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 8: Procedure.
Abstract This study aimed to present a survey with the reference values from 254 Brazilian male judokas hand grip strength according to their age, weight.
Limit Equlibrium Method. Limit Equilibrium Method Failure mechanisms are often complex and cannot be modelled by single wedges with plane surfaces. Analysis.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Abril 2016 Gabriel Mormilho Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo Departamento de Administração EAD5853 Análise.
Sec 3.6 Determinants. TH2: the invers of 2x2 matrix Recall from section 3.5 :
Pesquisa Operacional aplicada à Gestão de Produção e Logística Prof. Eng. Junior Buzatto Case 3.
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
Learning english with comics …………….. Aprendendo inglês com quadrinhos.
Equação de Evolução e método do volume-finito.
Visão geral do Aprendizado de máquina
Three analogies to explain reactive power Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to.
Workshop Pesquisa Acadêmica
Lei dos Grandes Números
Top-Down Parsing Teoría de Autómatas y Lenguajes Formales
Developing a Hypothesis
Introduction to Machine learning
Introduction to density estimation Modelação EcoLÓGICA
Pesquisadores envolvidos Recomenda-se Arial 20 ou Times New Roman 21.
Transcrição da apresentação:

Part 5: Regression Algebra and Fit 5-1/34 Econometrics I Professor William Greene Stern School of Business Department of Economics

Part 5: Regression Algebra and Fit 5-2/34 Gauss-Markov Theorem A theorem of Gauss and Markov: Least Squares is the minimum variance linear unbiased estimator (MVLUE) 1. Linear estimator 2. Unbiased: E[b|X] = β Theorem: Var[b*|X] – Var[b|X] is nonnegative definite for any other linear and unbiased estimator b* that is not equal to b. Definition: b is efficient in this class of estimators.

Part 5: Regression Algebra and Fit 5-3/34 Implications of Gauss-Markov Theorem: Var[b*|X] – Var[b|X] is nonnegative definite for any other linear and unbiased estimator b* that is not equal to b. Implies: b k = the kth particular element of b. Var[b k |X] = the kth diagonal element of Var[b|X] Var[b k |X] < Var[b k *|X] for each coefficient. c b = any linear combination of the elements of b. Var[c b|X] < Var[c b*|X] for any nonzero c and b* that is not equal to b.

Part 5: Regression Algebra and Fit 5-4/34 Summary: Finite Sample Properties of b Unbiased: E[b]= Variance: Var[b|X] = 2 (X X) -1 Efficiency: Gauss-Markov Theorem with all implications Distribution: Under normality, b|X ~ N[, 2 (X X) -1 (Without normality, the distribution is generally unknown.)

Part 5: Regression Algebra and Fit 5-5/34 Comparação de modelos Podemos comparar modelos sem usar testes estatsticos, mas sim medidas conhecidas como criterios de informação que traduzem a qualidade de ajustamento de um modelo. Para estes indicadores a variável principal acaba por ser uma medida do valor absoluto dos erros.

Part 5: Regression Algebra and Fit 5-6/34 Medida de Ajuste R 2 = b X M 0 Xb/y M 0 y (Very Important Result.) R 2 is bounded by zero and one only if: (a) There is a constant term in X and (b) The line is computed by linear least squares.

Part 5: Regression Algebra and Fit 5-7/34 Comparing fits of regressions Make sure the denominator in R 2 is the same - i.e., same left hand side variable. Example, linear vs. loglinear. Loglinear will almost always appear to fit better because taking logs reduces variation.

Part 5: Regression Algebra and Fit 5-8/34

Part 5: Regression Algebra and Fit 5-9/34 Adjusted R Squared Adjusted R 2 (for degrees of freedom) = 1 - [(n-1)/(n-K)](1 - R 2 ) includes a penalty for variables that dont add much fit. Can fall when a variable is added to the equation.

Part 5: Regression Algebra and Fit 5-10/34 Adjusted R 2 What is being adjusted? The penalty for using up degrees of freedom. = 1 - [e e/(n – K)]/[y M 0 y/(n-1)] uses the ratio of two unbiased estimators. Is the ratio unbiased? = 1 – [(n-1)/(n-K)(1 – R 2 )] Will rise when a variable is added to the regression? is higher with z than without z if and only if the t ratio on z is in the regression when it is added is larger than one in absolute value.

Part 5: Regression Algebra and Fit 5-11/34 Full Regression (Without PD) Ordinary least squares regression LHS=G Mean = Standard deviation = Number of observs. = 36 Model size Parameters = 9 Degrees of freedom = 27 Residuals Sum of squares = Standard error of e = Fit R-squared = <********** Adjusted R-squared = <********** Info criter. LogAmemiya Prd. Crt. = <********** Akaike Info. Criter. = <********** Model test F[ 8, 27] (prob) = 503.3(.0000) Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X Constant| ** PG| *** Y|.02214*** PNC| PUC| PPT| PN| * PS| *** YEAR| **

Part 5: Regression Algebra and Fit 5-12/34 PD added to the model. R 2 rises, Adj. R 2 falls Ordinary least squares regression LHS=G Mean = Standard deviation = Number of observs. = 36 Model size Parameters = 10 Degrees of freedom = 26 Residuals Sum of squares = Standard error of e = Fit R-squared = Was Adjusted R-squared = Was Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X Constant| ** PG| *** Y|.02231*** PNC| PUC| PPT| PD| (NOTE LOW t ratio) PN| PS| ** YEAR| *

Part 5: Regression Algebra and Fit 5-13/34 Outras medidas de Ajuste Para alternativas não aninhadas Inclui penalidade de grau de liberdade. Critério de Informação Schwarz (BIC): n log(e e) + k(log(n)) Akaike (AIC): n log(e e) + 2k Quando se quer decidir entre dois modelos não aninhados, o melhor é o que produz o menor valor do critério. A penalidade no BIC de incluir algo não relevante é maior que no AIC.

Part 5: Regression Algebra and Fit 5-14/34 Outras medidas de Ajuste Tanto o AIC quanto o BIC aumentam conforme SQR aumenta. Além disso, ambos critérios penalizam modelos com muitas variáveis sendo que valores menores de AIC e BIC são preferíveis. Como modelos com mais variáveis tendem a produzir menor SQR mas usam mais parâmetros, a melhor escolha é balancear o ajuste com a quantidade de variáveis. A penalidade no BIC de incluir algo não relevante é maior que no AIC.

Part 5: Regression Algebra and Fit 5-15/34 Multicolinearidade

Part 5: Regression Algebra and Fit 5-16/34 Formas funcionais

Part 5: Regression Algebra and Fit 5-17/34 Specification and Functional Form: Nonlinearity

Part 5: Regression Algebra and Fit 5-18/34 Log Income Equation Ordinary least squares regression LHS=LOGY Mean = Estimated Cov[b1,b2] Standard deviation = Number of observs. = Model size Parameters = 7 Degrees of freedom = Residuals Sum of squares = Standard error of e = Fit R-squared = Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X AGE|.06225*** AGESQ| *** D Constant| *** MARRIED|.32153*** HHKIDS| *** FEMALE| EDUC|.05542*** Average Age = Estimated Partial effect = – 2(.00074) = Estimated Variance e-6 + 4( ) 2 ( e-10) + 4( )( e-8) = e-08. Estimated standard error =

Part 5: Regression Algebra and Fit 5-19/34 Specification and Functional Form: Interaction Effect

Part 5: Regression Algebra and Fit 5-20/34 Interaction Effect Ordinary least squares regression LHS=LOGY Mean = Standard deviation = Number of observs. = Model size Parameters = 4 Degrees of freedom = Residuals Sum of squares = Standard error of e = Fit R-squared = Adjusted R-squared = Model test F[ 3, 27318] (prob) = 82.4(.0000) Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X Constant| *** AGE|.00227*** FEMALE|.21239*** AGE_FEM| *** Do women earn more than men (in this sample?) The coefficient on FEMALE would suggest so. But, the female difference is *Age. At average Age, the effect is ( ) =

Part 5: Regression Algebra and Fit 5-21/34

Part 5: Regression Algebra and Fit 5-22/34

Part 5: Regression Algebra and Fit 5-23/34 Quebra estrutural

Part 5: Regression Algebra and Fit 5-24/34 Linear Restrictions Context: How do linear restrictions affect the properties of the least squares estimator? Model: y = X + Theory (information) R - q = 0 Restricted least squares estimator: b* = b - (X X) -1 R [R(X X) -1 R ] -1 (Rb - q) Expected value: E[b*] = - (X X) -1 R [R(X X) -1 R ] -1 (Rb - q) Variance: 2 (X X) (X X) -1 R [R(X X) -1 R ] -1 R(X X) -1 = Var[b] – a nonnegative definite matrix < Var[b] Implication: (As before) nonsample information reduces the variance of the estimator.

Part 5: Regression Algebra and Fit 5-25/34 Interpretation Case 1: Theory is correct: R - q = 0 (the restrictions do hold). b* is unbiased Var[b*] is smaller than Var[b] How do we know this? Case 2: Theory is incorrect: R - q 0 (the restrictions do not hold). b* is biased – what does this mean? Var[b*] is still smaller than Var[b]

Part 5: Regression Algebra and Fit 5-26/34 Linear Least Squares Subject to Restrictions Restrictions: Theory imposes certain restrictions on parameters. Some common applications Dropping variables from the equation = certain coefficients in b forced to equal 0. (Probably the most common testing situation. Is a certain variable significant?) Adding up conditions: Sums of certain coefficients must equal fixed values. Adding up conditions in demand systems. Constant returns to scale in production functions. Equality restrictions: Certain coefficients must equal other coefficients. Using real vs. nominal variables in equations. General formulation for linear restrictions: Minimize the sum of squares, e e, subject to the linear constraint Rb = q.

Part 5: Regression Algebra and Fit 5-27/34 Restricted Least Squares

Part 5: Regression Algebra and Fit 5-28/34 Restricted Least Squares Solution General Approach: Programming Problem Minimize for L = (y - X ) (y - X ) subject to R = q Each row of R is the K coefficients in a restriction. There are J restrictions: J rows 3 = 0: R = [0,0,1,0,…] q = (0). 2 = 3 : R = [0,1,-1,0,…]q = (0) 2 = 0, 3 = 0: R = 0,1,0,0,…q = 0 0,0,1,0,… 0

Part 5: Regression Algebra and Fit 5-29/34 Solution Strategy Quadratic program: Minimize quadratic criterion subject to linear restrictions All restrictions are binding Solve using Lagrangean formulation Minimize over (, ) L* = (y - X ) (y - X ) + 2 (R -q) (The 2 is for convenience – see below.)

Part 5: Regression Algebra and Fit 5-30/34 Restricted LS Solution

Part 5: Regression Algebra and Fit 5-31/34 Restricted Least Squares

Part 5: Regression Algebra and Fit 5-32/34 Aspects of Restricted LS 1. b* = b - Cm where m = the discrepancy vector Rb - q. Note what happens if m = 0. What does m = 0 mean? 2. =[R(X X) -1 R ] -1 (Rb - q) = [R(X X) -1 R ] -1 m. When does = 0. What does this mean? 3. Combining results: b* = b - (X X) -1 R. How could b* = b?

Part 5: Regression Algebra and Fit 5-33/34