Física underground de neutrinos, aula 1 Introdução, oscilações, solares e atmosféricos José Maneira (LIP-Lisboa) Física Experimental (de Partículas) Mestrado/Doutoramento.

Slides:



Advertisements
Apresentações semelhantes
Presenter’s Notes Some Background on the Barber Paradox
Advertisements

São Paulo - November 7, 2013 Measuring the Cost of Formalization in Brazil © 2003 The Ronald Coase Institute Adopting RCI methodology to measure start.
CLEO 3 BELLE BTEV ATLASATLAS ? Intensa atividade experimental Além de dezenas de grupos experimentais pelo mundo …
Chapter Six Pipelining
Chapter Five The Processor: Datapath and Control (Parte B: multiciclo)
Por Dave Batty 3/2012 T Disciplinando alunos no programa Desafio Jovem Teen Challenge Staff Training Course T iTeenChallenge.org.
SUDBURY CANADA Bulby Mine UK GSI Geermany CERN CH Calar Alto Spain AUGER Argentina ISS MARS.
O problema dos neutrinos solares
Genética Molecular em Análises Clinicas
Ciência Robert Sheaffer: Prepared Talk for the Smithsonian UFO Symposium, Sept. 6, 1980.
Capacitores Ou, como guardar energia elétrica de forma relativamente simples.
Experiências de Indução.
Ligações Metálicas Bond between atoms with similar low electronegativities (ΔX ~0). Metallic bonding is essentially covalent bonding with delocalized electrons.
Curso de ADMINISTRAÇÃO
ANÁLISE DA PRODUÇÃO EM PERIÓDICOS ( ) SEGUNDO NOVOS ESTRATOS VITÓRIA, ES – OUTUBRO 2008 Kenneth Camargo – IMS/UERJ Cláudia Medina – IESC/UFRJ.
Meeting 17 Chapter & 6-6.
INTRODUÇÃO Fenômenos de Transporte: estuda como massa, quantidade de movimento, calor e outras formas de energia são transportadas por um meio sólido ou.
Towards a Requirement Analysis Approach for Dependable Law-Governed Systems Maíra Gatti, Gustavo Carvalho May 2nd 2006.
DIRETORIA ACADÊMICA NÚCLEO DE CIÊNCIAS HUMANAS E ENGENHARIAS DISCIPLINA: INGLÊS FUNDAMENTAL - NOITE PROFESSOR: JOSÉ GERMANO DOS SANTOS PERÍODO LETIVO
Fundamentos da teoria dos semicondutores Faixas de energia no cristal semicondutor. Estatística de portadores em equilíbrio. Transporte de portadores.
Análise da Probabilidade de Sobrevivência da Lacuna de Rapidez
Plasma de Quarks e Glúons no Interior de Estrelas de Nêutrons
A definição de Onda é das mais complexas que conheço. Não a de onda como todos a conhecemos, da perspectiva da praia. Não a de onda como mais um elemento.
Ondas distúrbio (de um meio) se propagam
Radiação Corpuscular:
Vetor da rede recíproca.
EST. HEXAGONAL COMPACTA
O BIG-BANG 1a parte.
 MORAL DA HISTÓRIA?? Nesse caso, os e - de maior  contribuição importante   pressão do gás; é a chamada PRESSÃO DE DEGENERESCÊNCIA. ►►
VI: EQUILÍBRIO RADIATIVO
1 3.5: Equilíbrio Termodinâmico 1 A existência de equilíbrio termodinâmico (ET) ou equilíbrio termodinâmico local (ETL) no interior estelar grandes simplificações:
1 ASTROFÍSICA ESTELAR (AGA 293) 1º SEMESTRE/2007 Eduardo Janot Pacheco Depto. de Astronomia, I.A.G. – U.S.P.
Técnicas de Processamento Imagens
Transferência de Calor por Radiação Térmica
TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA
Iluminação local MC-930 Tópicos em Computação Gráfica Luiz M. G. Gonçalves.
SECEX SECRETARIA DE COMÉRCIO EXTERIOR MINISTÉRIO DO DESENVOLVIMENTO, INDUSTRIA E COMÉRCIO EXTERIOR BRAZILIAN EXPORTS STATISTICAL DEPURATION SYSTEM Presentation.
CARTOGRAPHIES OF SEGREGATION From Snapshots to Processes and Trajectories Flávia F. Feitosa (UFABC) Antônio Miguel V. Monteiro (INPE) XIV Brazilian Symposium.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 3 Harmonic.
Ecological Economics Lecture 6 Tiago Domingos Assistant Professor Environment and Energy Section Department of Mechanical Engineering Doctoral Program.
Tópicos Especiais em Aprendizagem Reinaldo Bianchi Centro Universitário da FEI 2012.
SISTEMAS SUSTENTÁVEIS DE ENERGIA Energia Nuclear 2ª Aula 1 NUCLEAR ENERGY Sumário da 2ª aula 1.Estrutura da matéria 2.Reacções Químicas e Reacções Nucleares.
Seria interessante iniciar uma linha de pesquisa sobre fases geométrica em sistemas de estado sólido?
8-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Estimação (adapdado de Levine)
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Indicadores do Mercado de Meios Eletrônicos de Pagamento Setembro de 2006.
Lecture 4 Pressure distribution in fluids. Pressure and pressure gradient. Hydrostatic pressure 1.
Lecture 2 Properties of Fluids Units and Dimensions 1.
Tributação da Exportação nas Empresas optantes pelo Simples Nacional
Aula 9.
1-Considerações Básicas Sandro R. Lautenschlager Mecânica dos Fluidos Aula 2.
Introdução ao Modelo Padrão (Standard Model)
ACELERADORES e Física de Partículas Gaspar Barreira, LIP CERN PTP 2010.
1 © 2005,14 André Luiz V. da Costa e Silva Método CALPHAD Modelos de solução e exemplos em precipitação Andre Luiz V. da Costa e Silva Roberto R Avillez.
Balanço de Forças e de Quantidade de Movimento
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 5: Harmonic.
Aula Teórica 12 Equação de Bernoulli. Bernoulli’s Equation Let us consider a Stream - pipe such as indicated in the figure and an ideal fluid (without.
Loreena McKennitt The Mummers’ Dance km Typical sight from a satellite.
Cigré/Brasil CE B5 – Proteção e Automação Seminário Interno de Preparação para a Bienal 2006 Rio de Janeiro, setembro/06.
Equação da Continuidade e Equação de Navier-Stokes
Chapter 2 Harmonics and Interharmonics Theory
RELATÓRIO CEMEC 06 COMPARAÇÕES INTERNACIONAIS Novembro 2013.
Microprocessadores 8051 – Aula 3 Interrupção
Aula Teórica 18 & 19 Adimensionalização. Nº de Reynolds e Nº de Froude. Teorema dos PI’s , Diagrama de Moody, Equação de Bernoulli Generalizada e Coeficientes.
Olhe fixamente para a Bruxa Nariguda
Equação de Bernoulli e Equação de Conservação da Energia
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 8: Procedure.
Fundamentos da teoria dos semicondutores
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
Developing a Hypothesis
Transcrição da apresentação:

Física underground de neutrinos, aula 1 Introdução, oscilações, solares e atmosféricos José Maneira (LIP-Lisboa) Física Experimental (de Partículas) Mestrado/Doutoramento em Física, FCUL LIP – 13 de Dezembro de 2006

Sumário 1.Introdução 2.Oscilação de neutrinos 3.As brechas na Física Clássica de Neutrinos O problema dos neutrinos solares O problema dos neutrinos atmosféricos 4.Os resultados cruciais Super-Kamiokande SNO 5.Situação actual

1. Introdução

AstrophysicalAccelerators Soon ? Soon ? Nuclear Reactors (power stations, ships) Particle Accelerator Earths Atmosphere (Cosmic Rays) Sun Supernovae (star collapse) SN 1987A SN 1987A Earths Crust (Natural Radioactivity) Big Bang (here 330 /cm 3 ) Indirect Evidence Indirect Evidence Sources of neutrinos

As grandes descobertas recentes Os neutrinos têm massa! Há mistura de sabor nos leptões!

Motivação Física de Partículas Primeira evidência de que o Modelo Standard está incompleto: oMassa não nula, mistura de sabores Há muito para saber sobre o neutrino: oMassa absoluta, Dirac/Majorana, 13, fase de CP … Astrofísica, etc Enorme abundância o330 cm -3 no Universo, contra protões cm -3 oNa Terra, recebemos 4x10 10 cm -2 s -1 do Sol oO nosso corpo emite 340 milhões por dia ( 40 K) Papel fundamental no transporte de energia no Big Bang, em Supernovas e outros fenómenos extremos Além disso, detectá-los é um grande desafio!!

Neutrinos no Modelo Standard Há apenas L Não há termos de massa Acoplamentos ao W e Z Três famílias -sabores- de leptões Conservação do número leptónico de família l-l- l W-W- l Z0Z0 l l = e,

Declínio nuclear beta Porque precisamos de neutrinos? Conservação de energia no declínio Espectro contínuo implica 3 corpos no estado final Massa tem que ser muito pequena: End-point do espectro muito perto do máximo Limites actuais com trítio: M < 2.3 eV

Violação da Paridade Hipótese teórica de Lee & Yang +/- não são iguais no declínio beta Experiência de Chien-Shiung Wu (Madame Wu) (1957) observação do declínio beta de núcleos polarizados de Cobalto-60 Crióstato -> Temperatura aumenta Taxa de contagens maior para campo oposto à direcção dos electrões

Porquê três sabores? Brookhaven, 1962 Feixe de Detectam-se apenas muões e CERN-LEP, 1989 Espectro da produção de bosões Z 0 Largura indica 3 sabores de neutrinos Traçado de 1 muão isolado

3. Oscilação de neutrinos

Oscilações de neutrinos Estados próprios de massa (propagação) estados próprios de sabor (interacção fraca) Relaccionam-se através da matriz de mistura (simplificada a dois sabores) Os neutrinos são criados em estados próprios de sabor, sem massa bem definida Para massas não nulas, os estados próprios de massa ganham fases diferentes, pois a velocidade é diferente Por isso, a composição de sabor muda ao longo da trajectória Transformação de sabor Vista pelos detectores de e como um desaparecimento de neutrinos

Neutrino mixing NOT in Standard Model IF neutrinos are massive: States with well defined masses (mass matrix eigenstates): Staes participating in weak interactions: Lepton mixing:

Neutrino oscillation – 2 flavors changes during propagation, hence mass states: mixing angle: are defined as different proportions of 1 2 states 1 2 states have different masses different velocities

Oscillation probability – 2 flavors Probability of transition from a state to a state : E – neutrino energy (in GeV) L distance from a neutrino source to detector (km) oscillation parameters experimental conditions: m mass (in eV) mixing angle

Matter effects Incoherent scattering – typical mean free paths (depend on flavor, simplified energy dependence): It affects the neutrino phases in a flavor dependent way Coherent forward scattering is enhanced by

Mistura de sabor na matéria Por correntes carregadas: só e Por correntes neutras: todos Mas termos iguais não contribuem para diferenças de fase, por isso ignoram-se Notar sinal – para antineutrinos

Propagação na matéria

Equações têm a mesma forma do que no vácuo, mas com ângulo de mistura e valores próprios de massa diferentes e dependendentes da densidade Carácter ressonante do ângulo de mistura Diz-se efeito Mikheyev-Smirnov-Wolfenstein

Efeito MSW no Sol Para N e grande, e ~ 2 m Na condição adiabática, fica sempre em 2 Resonance Condition: Adiabatic Condition:

Flavor of neutrino state follows density change Resonance layer: n R Y e = 20 g/cc R R = 0.24 R sun In the production point: sin 2 m 0 = 0.94 cos 2 m 0 = 0.06 An example: E = 10 MeV 2m 1m Evolution of the eigenstate 2m 2m

Regeneration of the e flux Oscillations in the matter of the Earth Day - Night asymmetry Variations of signal during nights (zenith angle dependence), Seasonal variations Spectrum distortion Parametric effects for the core crossing trajectories core mantle 2 2

Mixing of 3 flavors For 3 flavors we need 3x3 matrix. In quark case the corresponding matrix is called CKM (Cabibo-Kobayashi-Maskava). For neutrinos sometimes the matrix is referred as: PMNS (Pontecorvo, Maki, Nakagawa, Sakata)

Mixing of 3 flavors The mixing matrix can be written: rotation by: = CP phase SolarAtmosphericNot measured yet: small

2.1. O Problema dos Neutrinos Solares

Energy Production in Stars pp chain CNO cycle Bethe 1939

Solar Neutrinos Bahcall, Davis 1964

Ingredientes do Modelo Solar Observação astronómica Observação astronómica+ Cte. G Medição Indirectamente, da composição de meteoritos Espectroscopia Previsão do modelo

Modelling stellar strcuture Basic assumptions: mass conservation hydrostatic equilibrium equation of state (gas & radiation) energy transport (radiative & convective) energy production

pp 99.75% 86% hep 2.4* Be 99.89% pep 0.25% 0.11% 14% 8 B 0.11% A cadeia pp de fusão nuclear

Bahcall, Pinsonneault, PRL2004 Stonehill, Formaggio, Robertson, PRC2004 Standard Solar Models : BP04

Princípios das experiências radioquímicas Reacção de captura nuclear Concentração química Contagem dos declínios do núcleo N 1 Solar Neutrino Unit [SNU] = 1 interaction per s each target atoms

Expected Signal (BP04 + N14) 8.2 SNU +1.8 – Cl( e,e) 37 Ar (E thr = 813 keV) K shell EC = 50.5 d 37 Cl keV (Auger e -, X) O Pioneiro: Experiência do Cloro 615 ton C 2 Cl 4 30 anos de estatística… Método sugerido em 1946 por Bruno Pontecorvo Demonstrou que Desde ! Prémio Nobel 2002 Ray Davis R = 2.56 ± 0.16 ± 0.16 SNU = 2.56 ± 0.23 = 2.56 ± 0.23

127 SNU +12 –10 1 Expected Signal (BP04 + N14) As Experiências do Gálio Principal vantagem: Limiar de energia mais baixo permite detectar neutrinos pp Duas experiência nos anos 90: GALLEX (Gran Sasso, Itália) SAGE (Rússia) Eficiência calibrada com fonte muito intensa de 51 Cr R = 68.1 ± 3.75 (5.5%)SNU 71 Ga( e,e) 71 Ge (E thr = 233 keV) K,L shell EC = 16.5 d 71 Ga + 10 keV, 1 keV (Auger e -, X)

O detector Super-Kamiokande Detector Cherenkov de água 50,000 ton de (22,500 ton fiducial) PMTs de φ=50 cm 39m 42m 50cm 20cm ν Partícula carregada Cone de Cherenkov

Cherenkov radiation Boat moves through water faster than wave speed. Bow wave Aircraft moves through air faster than speed of sound. Sonic boom Particle moves through transparent media faster than speed of light in that media. Cherenkov radiation Cone of light

Neutrinos solares Ruído de fundo uniforme Distribuição angular da dispersão elástica neutrino-electrão Small mixing angle (SMA) Large mixing angle (LMA) Vacuum oscillatio n

O problema dos neutrinos solares antes de SNO

2.2. O Problema dos neutrinos atmosféricos

Cosmic Ray, K e e μ Neutrinos from the other side of the Earth. e Produção de neutrinos atmosféricos

Flux × E 2 E (GeV) Measured cosmic ray proton flux Total flux Sabor dos neutrinos atmosféricos baixas energias: muão tem tempo para decair, /e~2 altas energias: muão atinge superfície terrestre antes de decair /e > 2, K e e μ ( + )/( e + e ) Características dos neutrinos atmosféricos

3000ton water Cherenkov detector electronics Water purification system Kamiokande ( ) Na mina Kamioka (1 km de montanha) NDE (Nucleon Decay Experiment)

Inside of Kamiokande 1983 (Kamiokande construction)

like ( CC ) e-like ( CC e ) MC predictio n Dat a We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. Some as-yet- unaccoundted-for physics such as neutrino oscillations might explain the data. Phys.Lett.B 205 (1988) 416. Esperava-se uma razão /e ~2, Observou-se /e~1 Durante bastante tempo especulou- se sobre erros nos modelos de fluxos de raios cósmicos Era necessário obter mais dados... Primeiros indícios (1988)

Atmospheric neutrinos and neutrino oscillations Cosmic ray p, He, …… Supe r-K ν μ ν τ oscillation Detect down- going and up- going ν Atmosphere Down- going Up- going

4.2. Super-Kamiokande

SuperKamiokande Electronics hutLINAC Control room Water and air purification system SK 2km3km 1km (2700mwe) 50 kton water fid. vol kton 39.3m 41.4m Inner DetectorOuter Detector 1885 of 8 inch PMTs (SK-III) Atotsu entrance Atotsu Mozumi Ikeno-yama Kamioka-cho, Gifu + e - + e - (for solar neutrinos) Sensitive to e e - =~ 0.15 × e e - Timing Vertex position Ring pattern direction Number of hit PMTs Energy (calibration with LINAC and 16 N)

Super-Kamiokande detector under construction Summer 1995

SuperK data taking phases SK-I ( ) Photo coverage 40% Feb-1996 Aug-2002 Apr-2006 SK-III (2006-) Photo coverage 40% SK-II ( ) Photo coverage 19%

Eν(GeV) Quasi-elastic 1 production Deep inelastic CC total lepton N N Quasi-elastic lepton N N* N 1 production lepton N N Deep inelastic Interacções de neutrinos

Fully Contained (FC) Partially Contained (PC) Through-going Stopping Tipos de eventos

FC(fully contained) Both CC e and (+NC) Need particle identification to separate e and events Single Cherenkov ring electron-like event Single Cherenkov ring muon-like event Color: timing Size: pulse height Outer detector (no signal) Eventos Fully-Contained

(only) 10m Particle ID Experiência dedicada em KEK Calibração do parâmetro de identificação de cones Cherenkov

PC (partially contained) 97% CC 900 events Signal in the outer detector Eventos Partially Contained

Upward going muon ν almost pure CC 1800 throught muons 400 stopping muons Upward stopping muon Upward through- going muon Eventos Partially Contained

(CC samples) (CC sample) Lepton momentum (GeV/c) lepton Nucleon (M N = 1GeV/c 2 ) Resolução angular

Super-K atmospheric neutrino data 1489day FC+PC data day upward going muon data CC e CC Up-going down-going

Atmospheric neutrinos and neutrino oscillations Cosmic ray p, He, …… Supe r-K ν μ ν τ oscillation Detect down- going and up- going ν Atmosphere Down- going Up- going

90% C.L. region sin 2 2 > 0.92 m 2 =(1.5 – 3.4)×10 -3 eV 2 Mixing angle is consistent with full mixing Up-going down-going Oscilações

oscillation decoherence decay Further evidence for oscillations Strong constraint on oscillation parameters, especially m 2 -like multi-GeV + PC Should observe this dip! Análise L/E (1/3)

Selection criteria Following events are not used: horizontally going events low energy events Select events with high L/E resolution ( (L/E) < 70%) FC single-ring - like Full oscillation 1/2 oscillatio n (L/E)=7 0% 2121 FC -like and 605 PC

MC (no osc.) 1489 days FC+PC Evidence for oscillatory signature Mostly down-going Mostly up-going Osc. Decay Decoh. Decay and decoherence disfavored at 3.4 and 3.8 levels, respectively. Distribuição L/E

Allowed neutrino oscillation parameters 2 min =37.9/40 m 2 =2.4x10 -3,sin 2 2 =1.00 (sin 2 2 =1.02, 2 min =37.8/40 d.o.f) 1.9x10 -3 < m 23 2 < 3.0x10 -3 eV < sin (90% C.L.) Stronger constraint on m 2 Consistent with that of the standard zenith angle analysis

5. Resumo

3 2 1 Atmospheric neutrinos Long baseline exp. Solar neutrinos Reactor exp. Reactor exp. Long baseline small m small mass e m m (normal mass hierarchy assumed) Massas e ângulos de mistura

Consistência com observações Resultados de neutrinos solares e atmosféricos são facilmente integrados num cenário de oscilações a três sabores

A matriz de mistura 13 = ? (fase CP) = ? majorana?