Primary, Final & Useful Energies Sankey Diagrams Class # 3

Slides:



Advertisements
Apresentações semelhantes
Presenter’s Notes Some Background on the Barber Paradox
Advertisements

As Horas Que horas são?.
Consideração do aquecimento global no planejamento energético
DIRETORIA ACADÊMICA NÚCLEO DE CIÊNCIAS HUMANAS E ENGENHARIAS DISCIPLINA: INGLÊS FUNDAMENTAL - NOITE PROFESSOR: JOSÉ GERMANO DOS SANTOS PERÍODO LETIVO
Trocadores de Calor Prof. Gerônimo.
O Modelo de Heckscher-Ohlin-Samuelson
Energia e sustentabilidade Carlos Pimenta
SECEX SECRETARIA DE COMÉRCIO EXTERIOR MINISTÉRIO DO DESENVOLVIMENTO, INDUSTRIA E COMÉRCIO EXTERIOR BRAZILIAN EXPORTS STATISTICAL DEPURATION SYSTEM Presentation.
International Seminar on Bilateral and South- South Cooperation TUCA cooperation meeting South-South Cooperation: the perspective of Global Partnership.
Avaliação Constituição dos grupos de trabalho:
Análise de Exergia (Disponibilidade)
Instituto Superior de Engenharia de Lisboa Engenharia Informática e dos Computadores Projecto e Seminário 2009/2010 CLOUD COMPUTING Nuno Sousa
Você já reparou que o clima na Terra está mudando? Já percebeu que a cada ano que passa a temperatura varia bruscamente, independente da estação? Frio.
Fundamentos da teoria dos semicondutores
Impacto do envelhecimento no setor saúde na América Latina: desafios e oportunidades Paulo M. Saad CELADE-Divisao de Populacao da CEPAL Envelhecimento.
A estratégia da IBM para a região RJ/MG/ES
1 st HALF OF 2005 RESULTS. Grandes marcas, preços baixos, todos os dias. Bovespa: LAME3 (CS) LAME4 (PS) 2 Operating Highlights Expansion of Store Network.
#Portfolio Technology & Information Applied. Extraction of Budgetary Data, Financial, Accounting & Construction Dashboards for Analysis, Data Management.
Eficiência Energética e Energias Renováveis
Energy Management and Policy 27/09/2003The Energy System – Current Situation and Market Trends M.Sc. in Engineering Policy and Management of Technology.
Simplificação dos Modelos i* Trabalho de Fernanda Alencar Clarissa César Borba.
Campos et al. Factors associated with death from dengue in the state of Minas Gerais, Brazil: historical cohort study Objectives: To analyse the clinical.
Elaboração do aço. Steel recycling Rates ( ) Steel´s infinite recyclability sets it apart from other materials in that it can be recycled.
Meio Ambiente Emissões Reciclagem. Interação Greenhouse gases and criteria air pollutants. The majority of the CO2 in the U.S. is emitted by transportation.
W2i Digital Communities Best Practices Awards Wireless: Uma Rede de Cidadania Project Lead:Date: 30/10/2006 Organization: Prefeitura de Sud MennucciCountry:Brazil.
Video Capítulo 8: Impasses. Silberschatz, Galvin and Gagne  Video Operating System Concepts Assuntos n Modelo de Sistemas n Carcterização de.
Plano de Neg ó cio e Capital de Risco ASIT e-Business 3 ª PARTE: Exemplos Fernando Machado 25-jun-02.
Título da Apresentação Autor Escolha uma restrição e apague as outras Uso Exclusivo do(a) CTC ou Associada ou Área Uso Exclusivo das Associadas ao CTC.
Ambiente & Energia Estatísticas Energéticas Valentim M B Nunes Unidade Departamental de Engenharias Instituto Politécnico de Tomar, Setembro, 2014.
‘Internet rights and wrongs. Choices and challenges in a Networked World’ Hillary Clinton George Washington University, February 2011.
Energias renováveis Renewable energy. Americans using most renewable energy since 1930s Connie J. Spinardi | Getty Images Solar farm and wind turbines.
Universidade Estadual Paulista “Júlio de Mesquita Filho” campus de Rio Claro PPGEB-Programa Pós-Graduação em Ecologia e Biodiversidade.
SEIKO GROUP. ・ Sample: Azoxyanisole ・ DSC : DSC6200 ・ Sample :5 mg ・ Scan Rate : 20 ゚ C/min DSC.
Population Aging and Intergenerational Transfers in Brasil Cassio M.Turra Demography Department Cedeplar, UFMG.
CropSyst Training Course, Piracicaba, Brasil, 2010 Water Balance in CropSyst Marcello Donatelli CRA-ISCI, Italy Claudio Stockle BSE, Washington State University,
Strategic dimensions of brazilian development Seminário internacional: Papel do Estado no Século XXI ENAP - Brasília, 3 de setembro de 2015 Mariano Francisco.
Limit Equlibrium Method. Limit Equilibrium Method Failure mechanisms are often complex and cannot be modelled by single wedges with plane surfaces. Analysis.
Aula Prática 5. Fluxes (Problem 1.07) Consider the flow in a rectangular duct, formed by two paralell plates (width b=1m and height 2h= 30cm) where air.
© 2007 IBM Corporation Academic Initiative 07/05/07 Aula 2 – Parte 1: Java Basics Autores: Argemiro José de Juliano Marcos
Gerenciamiento de RSU y conversión energética Prof. Dr. Electo Silva Lora Universidade Federal de Itajubá MINIFORUM CYTED.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Benchmarking em gestão de carreiras. Ideias-chave  O conceito de sucesso organizacional mudou  “Being engaged in challenging work, continuous learning,
Gestão de Sistemas Energéticos 2015/2016 Introdução Classe # 1 Prof. Tânia Sousa
Mecânica de Fluidos Ambiental 2015/2016
SISTEMA DE TRANSITIVIDADE: PARTICIPANTES PROCESSOS CIRCUNSTÂNCIAS.
APPLICATIONS OF DIFFERENTIAL EQUATIONS - ANIL. S. NAYAK.
APPLICATIONS OF DIFFERENTIAL EQUATIONS PRESENTED TO:DR.SADIA ARSHAD PRESENTED BY:ASHHAD ABBAS GILANI(026) SHAHAB ARSHAD(058) RIAZ HUSSAIN(060) MUHAMMAD.
“Energy Consumption Tendencies and Technological Options” Prof. José Goldemberg.
Ângelo Bressan Filho Ministério da Agricultura, Pecuária e Abastecimento (Ministry of Agriculture, Livestock and Food Supply) Agosto de 2007 Os Biocombustíveis.
Abril 2016 Gabriel Mormilho Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo Departamento de Administração EAD5853 Análise.
Pesquisa Operacional aplicada à Gestão de Produção e Logística Prof. Eng. Junior Buzatto Case 4.
Sec 3.6 Determinants. TH2: the invers of 2x2 matrix Recall from section 3.5 :
1 Agro-Food Business Macroenvironment Chapters: 01, 02, 03, 04, 14, 15, 16, 23,42 Prof. Dr. Marcos Fava Neves University of São Paulo, Brazil Visiting.
Pesquisa Operacional aplicada à Gestão de Produção e Logística Prof. Eng. Junior Buzatto Case 3.
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
The Cosmeceutical Market - Current and Future Outlook in-cosmetics Asia: Oct 2013 Shushmul Maheshwari CEO RNCOS, India.
INFRASTRUCTURE DEVELOPMENT IN THE CITY OF SÃO PAULO
Vive viajando, neh? Emprego e trabalho no Turismo
Gestão de Sistemas Energéticos 2016/2017
2nd IAEE Eurasian Conference
Tópico 7 Custeamento por Ordem
Escoamentos Turbulentos Reativos/ Turbulent Reactive Flows
Reginaldo Bertolo, Ricardo Hirata, Osvaldo Aly Jr.
2nd IAEE Eurasian Conference
Submetendo a Periódicos
Three analogies to explain reactive power Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to.
Wondershare software On the [View] menu, point to [Master], and then click [Slide Master] or [Notes Master].
Internationalization
2º ENCONTRO UAB-UFPA (Polo Barcarena)
Why Moringa Delight? Perfection in Growing and Processing We produce the highest quality Moringa under perfect growing conditions on the largest Moringa.
Transcrição da apresentação:

Primary, Final & Useful Energies Sankey Diagrams Class # 3 Energy Management: 2013/2014 Primary, Final & Useful Energies Sankey Diagrams Class # 3 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Units and Scales How much energy should we ingest daily? How much energy do you spend per hour using an electric heater?

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales Activities (kJ) IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales Activities (MJ-GJ or kWh=3.6MJ) IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales Activities (GJ-TJ or toe=41.87GJ) IAASA – Global Energy Assessment 2012

Energy Units and Scales Activities (GJ-TJ or toe=41.87GJ) In early agricultural societies 10-20 GJ/capita/year 2/3 for food and feed 1/3 for cooking, heating and early industrial activities In UK in the mid-19th century 100 GJ/capita/year In Portugal in 2010 108 GJ/capita/year

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Energy Units and Scales IAASA – Global Energy Assessment 2012

Forms of Energy - Primary energy

Forms of Energy - Final energy

Forms of Energy – Useful Energy

Forms of Energy Primary energy – embodied in resources as it is found in nature (coal, oil, natural gas in the ground) Final energy – sold to final consumers such as households or firms (electricity, diesel, processed natural gas) Useful energy – in the form that is used: light, heat, cooling and mechanical power (stationary or transport) Productive energy – the fraction of useful energy that we actually use

From Primary Energy to Energy Services

From Primary Energy to Energy Services Energy Supply energy flows driven by resource availability and conversion technologies IAASA - Global Energy Assessment 2012

From Primary Energy to Energy Services The energy supply sector dealing with primary energy is referred as “upstream” activities IAASA - Global Energy Assessment 2012

From Primary Energy to Energy Services The energy supply sector dealing with secondary energy is referred as “downstream” activities IAASA - Global Energy Assessment 2012

From Primary Energy to Energy Services Energy Demand Energy system is service driven IAASA - Global Energy Assessment 2012

From Primary Energy to Energy Services Quality and cost of energy services IAASA - Global Energy Assessment 2012

Energetic Balance Where are the primary and final energies in the energetic balance? BALANÇO ENERGÉTICO tep   Total de Carvão Total de Petróleo Gás Natural (*) Gases o Outros Derivados Total de Eectricidade Calor Resíduos Industriais Renováveis Sem Hídrica TOTAL GERAL 2008 4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46 IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984 24 022 754 PRODUÇÃO DOMÉSTICA 2. 1 142 338 39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960 - 837 97 193 SAÍDAS 4. 24 949 3 680 661 112 918 17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404 3 173 882 24 462 216 PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048 CONSUMO DO SECTOR ENERGÉTICO 7. 475 376 56 103 605 301 270 736 3 1 407 519 CONSUMO COMO MATÉRIA PRIMA 1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807 ACERTOS 9. 9 851 - 47 340 - 1 382 12 279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343 4 159 087 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1 358 801 3 359 87 218 2 366 21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2 66 103 8 444 49 882 30 844 4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 1 085 788 1 027 157 1 340 009 1 154 293 615 382 5 332 628 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4 576 210 5 063 50 490 631 784 TRANSPORTES 10.5 6 680 176 6 659 46 677 3 452 6 736 964 SECTOR DOMÉSTICO 10.6 552 680 300 190 1 157 672 1 180 750 3 191 292 SERVIÇOS 10.7 509 277 154 471 1 427 139 14 211 6 579 2 111 677

Energetic Balance Where are the primary and final energies in the energetic balance? BALANÇO ENERGÉTICO tep   Total de Carvão Total de Petróleo Gás Natural (*) Gases o Outros Derivados Total de Eectricidade Calor Resíduos Industriais Renováveis Sem Hídrica TOTAL GERAL 2008 4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46 IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984 24 022 754 PRODUÇÃO DOMÉSTICA 2. 1 142 338 39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960 - 837 97 193 SAÍDAS 4. 24 949 3 680 661 112 918 17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404 3 173 882 24 462 216 PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048 CONSUMO DO SECTOR ENERGÉTICO 7. 475 376 56 103 605 301 270 736 3 1 407 519 CONSUMO COMO MATÉRIA PRIMA 1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807 ACERTOS 9. 9 851 - 47 340 - 1 382 12 279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343 4 159 087 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1 358 801 3 359 87 218 2 366 21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2 66 103 8 444 49 882 30 844 4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 1 085 788 1 027 157 1 340 009 1 154 293 615 382 5 332 628 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4 576 210 5 063 50 490 631 784 TRANSPORTES 10.5 6 680 176 6 659 46 677 3 452 6 736 964 SECTOR DOMÉSTICO 10.6 552 680 300 190 1 157 672 1 180 750 3 191 292 SERVIÇOS 10.7 509 277 154 471 1 427 139 14 211 6 579 2 111 677

Energetic Balance Where is the useful energy in the energetic balance? BALANÇO ENERGÉTICO tep   Total de Carvão Total de Petróleo Gás Natural (*) Gases o Outros Derivados Total de Eectricidade Calor Resíduos Industriais Renováveis Sem Hídrica TOTAL GERAL 2008 4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46 IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984 24 022 754 PRODUÇÃO DOMÉSTICA 2. 1 142 338 39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960 - 837 97 193 SAÍDAS 4. 24 949 3 680 661 112 918 17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404 3 173 882 24 462 216 PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048 CONSUMO DO SECTOR ENERGÉTICO 7. 475 376 56 103 605 301 270 736 3 1 407 519 CONSUMO COMO MATÉRIA PRIMA 1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807 ACERTOS 9. 9 851 - 47 340 - 1 382 12 279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343 4 159 087 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1 358 801 3 359 87 218 2 366 21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2 66 103 8 444 49 882 30 844 4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 1 085 788 1 027 157 1 340 009 1 154 293 615 382 5 332 628 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4 576 210 5 063 50 490 631 784 TRANSPORTES 10.5 6 680 176 6 659 46 677 3 452 6 736 964 SECTOR DOMÉSTICO 10.6 552 680 300 190 1 157 672 1 180 750 3 191 292 SERVIÇOS 10.7 509 277 154 471 1 427 139 14 211 6 579 2 111 677

Energetic Balance How do you go from final to useful energy for household electricity consumption? BALANÇO ENERGÉTICO tep   Total de Carvão Total de Petróleo Gás Natural (*) Gases o Outros Derivados Total de Eectricidade Calor Resíduos Industriais Renováveis Sem Hídrica TOTAL GERAL 2008 4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 45 47=4+22+23+30+36+37+38+46 IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984 24 022 754 PRODUÇÃO DOMÉSTICA 2. 1 142 338 39 800 3 190 679 4 372 817 VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960 - 837 97 193 SAÍDAS 4. 24 949 3 680 661 112 918 17 634 3 836 162 CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404 3 173 882 24 462 216 PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048 CONSUMO DO SECTOR ENERGÉTICO 7. 475 376 56 103 605 301 270 736 3 1 407 519 CONSUMO COMO MATÉRIA PRIMA 1 275 842 DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807 ACERTOS 9. 9 851 - 47 340 - 1 382 12 279 - 38 580 CONSUMO FINAL 10. 71 319 9 829 035 1 505 343 4 159 087 1 806 209 18 611 387 AGRICULTURA E PESCAS 10.1 358 801 3 359 87 218 2 366 21 451 765 INDÚSTRIAS EXTRACTIVAS 10.2 66 103 8 444 49 882 30 844 4 155 277 INDÚSTRIAS TRANSFORMADORAS 10.3 1 085 788 1 027 157 1 340 009 1 154 293 615 382 5 332 628 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4 576 210 5 063 50 490 631 784 TRANSPORTES 10.5 6 680 176 6 659 46 677 3 452 6 736 964 SECTOR DOMÉSTICO 10.6 552 680 300 190 1 157 672 1 180 750 3 191 292 SERVIÇOS 10.7 509 277 154 471 1 427 139 14 211 6 579 2 111 677

Useful Energy How do you go from final to useful energy for household electricity consumption? Electrical resistance 100% Electrical motor 90% Fluorescent lamp 50% Refrigerator 200% Heat pump 250%

Sankey diagrams Schematic representation of the energy flow Miguel Águas (2009)

Sankey Diagram for Portugal for 2010 BALANÇO ENERGÉTICO tep   Total de Carvão Total de Petróleo Gás Natural Total de Eletricidade Renováveis Sem Eletricidade TOTAL GERAL 2010 4 = 1 a 3 22= 15 + 21 23 36 = 31 a 35 46 = 39 a 45 47=4+22+23+30+36+37+38+46 CONSUMO DE ENERGIA PRIMÁRIA 5. 1 656 757 11 241 129 4 506 817 2 474 507 3 168 351 23 101 751 PARA NOVAS FORMAS DE ENERGIA 6. 1 597 427 563 778 2 857 644 -2 403 968 1 819 195 2 846 994 Produtos de Petróleo 6.3 - 321 179 321 473 - 8 290 Eletricidade 6.6 285 397 1 740 776 -1 787 691 456 792 2 299 882 Cogeração 6.7 562 580 1 116 868 - 616 277 1 040 930 555 402 CONSUMO DO SECTOR ENERGÉTICO 7. 277 453 134 954 589 099 10 1 252 656 Consumo Próprio da Refinação 7.1 215 503 121 238 45 829 633 710 Perdas da Refinação 7.2 58 915 58 925 Centrais Eléctricas 7.4 3 035 128 271 131 306 Bombagem Hidroeléctrica 7.5 44 032 Perdas de Transporte e Distribuição 7.8 13 716 370 355 384 071 DISPONÍVEL PARA CONSUMO FINAL 8. 59 330 9 111 257 1 514 219 4 289 376 1 349 146 17 713 460 ACERTOS 9. 9 130 4 999 4 761 - 132 14 762 CONSUMO FINAL 10. 50 200 9 106 258 1 514 215 4 288 615 1 349 278 17 698 698 AGRICULTURA E PESCAS 10.1 360 870 3 511 88 164 65 455 009 INDÚSTRIAS EXTRATIVAS 10.2 62 582 7 951 47 271 91 151 412 INDÚSTRIAS TRANSFORMADORAS 10.3 825 308 971 726 1 331 090 590 133 5 101 671 CONSTRUÇÃO E OBRAS PÚBLICAS 10.4 493 136 9 218 52 436 554 790 TRANSPORTES 10.5 6 430 400 12 581 40 857 4 233 6 488 071 SECTOR DOMÉSTICO 10.6 679 765 300 266 1 248 873 724 980 2 953 884 SERVIÇOS 10.7 254 197 208 962 1 479 924 29 776 1 993 861

Sankey diagram for Portugal 2010

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 IAASA – Global Energy Assessment 2012

Regional Energy Use in 2005

World Sankey Diagram in 2005 Overall 1st law efficiency in converting primary to final energy? ? ? US – 94 EJ Portugal – 1.1 EJ IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 Overall 1st law efficiency in converting primary to final energy? 66% ? ? US – 94 EJ Portugal – 1.1 EJ IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 Overall 1st law efficiency in converting primary to useful energy? ? ? US – 94 EJ Portugal – 1.1 EJ IAASA – Global Energy Assessment 2012

World Sankey Diagram in 2005 Overall 1st law efficiency in converting primary to useful energy? 34% ? ? US – 94 EJ Portugal – 1.1 EJ IAASA – Global Energy Assessment 2012

Typical values of 1st law efficiencies 1st Law efficiencies from primary to final energy 1st Law efficiencies from final to useful energy

Sankey Diagram for an Energy Service Example?

Sankey Diagram for an Energy Service Example?

Sankey Diagram for an Energy Service Schematic representation of the energy flow (natural gas electricity light reading) What is the aggregate efficiency? 20% 50%

Sankey Diagram for an Energy Service Schematic representation of the energy flow (natural gas electricity light reading) What is the aggregate efficiency? 20% 50%

Are there 1st law efficiencies > 1? What is the 1st Law efficiency in a heat pump?

Are there 1st law efficiencies > 1? What is the 1st Law efficiency in a heat pump? Typical values of  between 3 – 5 What is the Sankey diagram like?

Are there 1st law efficiencies > 1? What is the 1st Law efficiency in a heat pump? Typical values of  between 3 – 5 What is the Sankey diagram like?

Sankey Diagram A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. Draw the Sankey Diagram

Sankey Diagram A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. Draw the Sankey Diagram What is the overall efficiency? 40% 93% Coal Mine Coal at the Power Plant Electricity Coal at the coal mine 1 Mcal = 4.187 MJ 1 toe = 41868 MJ 7% Coal at the Power Plant 60% Electricity at the Power Plant

Sankey Diagram A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. Draw the Sankey Diagram What is the overall efficiency? What is the coefficient of conversion between final and primary energy in MWhe/TOE? 40% 93% Coal Mine Coal at the Power Plant Electricity Coal at the coal mine 1 Mcal = 4.187 MJ 1 toe = 41868 MJ 7% Coal at the Power Plant 60% Electricity at the Power Plant Eficiency = 2800/7500 = 37%

Sankey Diagram A coal thermal power plant has an efficiency of 40%. The combustion of coal releases 7000kcal/kg. The energy consumption associated with extraction, transport and grinding represent 500 kcal/kg. Draw the Sankey Diagram What is the overall efficiency? What is the coefficient of conversion between final and primary energy in MWhe/TOE? 40% 93% Coal Mine Coal at the Power Plant Electricity 1 Mcal = 4.187 MJ 1 toe = 41868 MJ

Conversion between F.E and P.E Conversion coefficients are efficiencies and not direct conversions From coal (P.E) to electricity (F.E) Direct conversion What about the conversion coefficient from natural gas to electricity?    

Are first law efficiencies enough? Heating of a house can be done by one of the following methods: Electrical heating using the Joule effect Central heating Heating using a heat pump

Are first law efficiencies enough? Heating of a house can be done by one of the following methods: Electrical heating using the Joule effect Central heating (burning natural gas in a furnace with a 90% efficiency) Heating using a heat pump (COP=3). Suppose that electricity has a production efficiency of 45% and costs 0.12 euros per kWh, natural gas is transported with a 99% efficiency, and costs 0.0708 euros per kWh. Compare the alternatives in terms of primary energy, final energy and cost for 1 kWh of thermal energy. Draw the Sankey Diagrams Discuss the investment associated with each solution.

Are first law efficiencies enough? Heating of a house can be done by one of the following methods: Electrical heating using the Joule effect Central heating (burning natural gas in a furnace with a 90% efficiency) Heating using a heat pump (COP=3). Suppose that electricity has a production efficiency of 45% and costs 0.12 euros per kWh, natural gas is transported with a 99% efficiency, and costs 0.0708 euros per kWh. Compare the alternatives in terms of primary energy, final energy and cost for 1 kWh of thermal energy. Draw the Sankey Diagrams Discuss the investment associated with each solution. Electrical Resistance Central Heating Heat Pump Primary (kWh) 1/0.45=2.22 (1/0.90)/0.99=1.12 (1/3)/0.45=0.74 Final (kWh) 1 1/0.90=1.11 1/3=0.33 Useful (kWh) Cost (euros) 1*0.12 ((1/0.9))*0.0708 1/3*0.12

Are first law efficiencies enough? Providing 1 kWh of heat at 30ºC to a building with an outside temperature of 4ºC First law efficiencies do not provide information on how much you can improve your efficiency Electrical Resistance Central Heating Heat Pump Ideal Heat Pump Final (kWh) 1 1/0.90 1/3 1/12 Useful (kWh) First Law  100% 90% 300% 1200%

Second law efficiencies Ratio between 1st law real and best efficiencies Providing 1 kWh of heat at 30ºC to a building with an outside temperature of 4ºC Second law efficiencies provide information on how much you can improve your efficiency Electrical Resistance Central Heating Heat Pump Ideal Heat Pump Final (kWh) 1 1/0.90 1/3 1/12 Useful (kWh) First Law  100% 90% 300% 1200% Second Law  8.3% 7.5% 25%

Typical values of 2nd law efficiencies IAASA - Global Energy Assessment 2012 Overall 2nd law efficiency in converting primary to final is 76% and primary to useful energy is 10%

Primary Energy Use 1800-2000 Grubler, A. “Energy Transitions” Population (lines) Primary energy use (bars) industrialized countries (white squares and bars) developing countries (gray triangles and bars) Energy use data includes estimates of noncommercial energy use Grubler, A. “Energy Transitions”

Primary Energy Use 1800-2000 Population (lines) Primary energy use (bars) industrialized countries (white squares and bars) developing countries (gray triangles and bars) Energy use data includes estimates of noncommercial energy use Primary energy use increased more than 20-fold in 200 years Heterogeneity in per capita primary energy use: In industrialized countries population increased linearly while primary energy use increased exponentially until recently In developing countries energy use increased proportionally to population until recently Primary Energy Mix ? Grubler, A. “Energy Transitions”

Primary Energy Mix 1850-2010 Grubler, A. “Energy Transitions” IAASA – Global Energy Assessment 2012

Primary Energy Mix 1850-2010 Mostly biomass in 1850 Increasing diversification of energy vectors Grubler, A. “Energy Transitions” IAASA – Global Energy Assessment 2012

Primary Energy Mix 1850-2010 Grubler, A. “Energy Transitions”

Primary Energy Mix 1800-2040 Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Primary Energy Mix 1800-2040 Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012) Energy Transition biomass to coal

Primary Energy Mix 1800-2040 Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012) Energy Transition biomass to coal Energy Transition coal to oil

Primary Energy Mix 1800-2040 Energy Transition: The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012) Energy Transition biomass to coal Energy Transition coal to oil Stabilization

Energy Eras and Transitions Energy Transformations before industrial civilization:

Energy Eras and Transitions Energy Transformations before industrial civilization: Solar radiation – food & feed, light and heat Animate labor from humans and work animals (levers, inclined planes, pulleys) – mechanical work & transport Kinetic energies of water & wind – mechanical work & transport Biomass fuels (wood, charcoal, crop residues, dung) –residential & industrial heat and light

Energy Eras and Transitions Energy Transformations before industrial civilization: Dominant in the western world until the 2nd half of the 19th century Dominant for most of humankind until middlle of the 20th century Annual per capita primary energy consumption  20 GJ

Energy Eras and Transitions Energy Transformations that came with industrial civilization: Fossil fuels – heat & mechanical work & transport (steam engines, internal combustion engines and steam turbines)

Energy Transitions An aggregated transition to other energy source(s) includes numerous services and sectors

Energy Transitions 16th century (tall narrow chimneys and suitable grates ) 17th century (coal gets even cheaper) The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Energy Transitions 1709 (coke) 18th century (efficiency improvments) The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Energy Transitions 1804 (1st steam locomotive) The switch from an economic system dependent on one or a series of energy sources and technologies to another (Fouquet & Pearson, 2012)

Why do energy transitions occur? Main Drivers/Catalyst for adoption of a new energy carrier: Price of energy Better/Different Service Technological change and innovation Efficiency improvments

Decarbonization of Energy Systems Decreasing trend in CO2 emitted per GJ from 1850 to 2000 2010: 108 GJ/capita/year 7600 kg CO2/capita/year

Decarbonization of Energy Systems Historically energy related biomass burning has not been carbon-neutral (maximum estimated value of 38%)

Decarbonization of Energy Systems Why a slight increasing trend in the last 10 years?

Power generation 1990-2010 Non-hydro renewables Hydro Share of coal-based electricity Despite an increasing contribution across two decades, the share of non-fossil generation has failed to keep pace with the growth in generation from fossil fuels. Share of non-fossil electricity Non-hydro renewables Electricity generation (TWh) Hydro Share of electricity (%) Nuclear Coal has also satisfied the major growth in power generation over the past decade. The figure speaks for itself. Note the declining share of non-fossil fuels to generate electricity. IEA - Energy Technology Perspectives 2012 © OECD/IEA 2012

Final Energy from 1900-2000 World final energy use by consumers. Solids (such as coal and biomass, brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green). Grubler, A. “Energy Transitions”

Final Energy from 1900-2000 World final energy use by consumers. Solids (such as coal and biomass, brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green). “With rising incomes, consumers pay increasing attention to convenience and cleanliness, favoring liquids and grid-delivered energy forms” Grubler, A. “Energy Transitions”

Final Energy from 1900-2000 World final energy use by consumers. Solids (such as coal and biomass, brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green). Developing countries OECD (squares) Grubler, A. “Energy Transitions”

Final Energy from 1900-2000 World final energy use by consumers. Solids (such as coal and biomass, brown), Liquids (such as oil, red) and fuels delivered via dedicated Grids (such as natural gas and electricity, green). Heterogeneity in final energy quality Grubler, A. “Energy Transitions”

Final Energy per capita in 2010 Heterogeneity in Final Energy Use per capita: IAASA – Global Energy Assessment 2012

What is Final Energy used for? UK 1800-2000 IAASA – Global Energy Assessment 2012

What is Final Energy used for? Regular expansion of energy services in 19th dominated by heat and transport High volatility due to political and economic events Moderated growth after 1950 Decline in industrial energy services compensated by strong growth in transport Saturated at a level of 6 EJ or 100 GJ/capita What about energy services? IAASA – Global Energy Assessment 2012

From Final Energy to Energy Services UK 1800-2000 IAASA – Global Energy Assessment 2012

From Final Energy to Energy Services UK 1800-2000 Increasing efficiencies in converting final energy to energy services Ranges between a factor of 5 for transportation and 600 for lighting IAASA – Global Energy Assessment 2012

From Final Energy to Energy Services UK 1800-2000 Lower prices of energy services Ranges between a factor of 10 for heating and 70 for lighting IAASA – Global Energy Assessment 2012

Energy Services 2005 Energy services cannot be expressed in common units Transport 13 km/day/per capita 1 ton 20 km/day/per capita Industry 9 ton/year/per capita (steel + fertilizers + construction materials + plastics … Buldings Heating/cooling to 20m2/per capita Useful energy minimizes distortions among different energy service categories, as it most closely measures the actual energy service provided.

World Sankey Diagram in 2005

Second law efficiencies Second law efficiencies provide information on the destruction of exergy What is exergy? Δz = 0m Δz = 120m Power = 0 W Power = 150 kW

Energy vs. Exergy environment 20ºC 160ºC 25ºC Energy = 105 MJ Potential Work = 34 MJ Potential Work = 1.8 MJ Exergy = 34 MJ Exergy = 1.8 MJ environment 20ºC