METABOLISMO MICROBIANO

Slides:



Advertisements
Apresentações semelhantes
Patrícia Rosa de Araujo
Advertisements

Fotossíntese e Respiração Celular
RESPIRAÇÃO CELULAR Processo de obtenção de energia pela célula.
METABOLISMO ENERGÉTICO
A energia nos seres vivos
Metabolismo Energético das Células
Prof. Waldemar Ernani Martins
Obtenção de Matéria pelos Seres Autotróficos.
ENZIMAS Universidade Católica de Goiás Departamento de Biologia
Respiração Celular.
ORGANELAS CITOPLASMÁTiCAS Profº. CLAUDIO GIOVANNINI
RESPIRAÇÃO CELULAR.
Metabolismo microbiano
Metabolismo Microbiano
Metabolismo microbiano
Metabolismo energético
Bioenergética.
COLÉGIO NOSSA SENHORA DE FÁTIMA
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
RESPIRAÇÃO CELULAR AERÓBICA
Metabolismo Energético
Respiração Celular É o processo de conversão da energia contida em ligações químicas de moléculas em ATPs que podem ser usados nos processos vitais. A.
Metabolismo Celular Metabolismo:
Ser heterótrofo: ser que não produz seu próprio alimento.
Metabolismo Energético Celular
RESPIRAÇÃO CELULAR AERÓBICA
Fotossíntese.
Metabolismo energético
FOTOSSÍNTESE. ADENOSINA (nucleotídeo) NUCLEOTÍDEO = adenosina monofosfato (AMP)Adenosina difosfato (ADP) Adenosina trifosfato (ATP) Adenina Fosfato.
AULA 07 FOTOSSÍNTESE E RESPIRAÇÃO.
RESPIRAÇÃO CELULAR.
TRANSFERÊNCIA DE MATÉRIA E ENERGIA
Metabolismo Energético da Célula
FOTOSSÍNTESE.
Respiração nas Plantas
Metabolismo Celular Metabolismo  conjunto de reações químicas que ocorrem no organismo. Reagentes Produtos Energia.
A obtenção de energia pela célula
INTRODUÇÃO AO METABOLISMO
Biologia Departamento: Bioquímica
RESPIRAÇÃO CELULAR E FERMENTAÇÃO
MITOCÔNDRIA RESPIRAÇÃO CELULAR
METABOLISMO CELULAR  FERMENTAÇÃO & RESPIRAÇÃO.
Respiração Celular.
Transformação e utilização de energia pelos seres vivos
Apresentação desenvolvida pelo Prof. Bruno Cacique
FOTOSSÍNTESE.
FUNDAMENTOS DE BIOQUÍMICA
Biologia 2.
Metabolismo energético
Aula 3 – Bioenergética, fermentação e Respiração Celular 05/04/2011
RESPIRAÇÃO AERÓBIA Depende fundamentalmente de um organóide citoplasmático denominado mitocôndria. MITOCÔNDRIA MEMBRANA INTERIOR MEMBRANA EXTERIOR CRISTAS.
METABOLISMO ENERGÉTICO
METABOLISMO CELULAR  FERMENTAÇÃO & RESPIRAÇÃO.
Fotossíntese e Respiração Celular
Biologia Celular Aula 9 e 10 Respiração Celular Aeróbia
Organelas e metabolismo energético da célula
METABOLISMO CELULAR  RESPIRAÇÃO.
PROFESSOR HELIOMAR.
O que é energia? Física: É a capacidade de realizar trabalho;
3. Queima dos hidrogênios, na cadeia respiratória
FOTOSSÍNTESE Profª Drª Elizabete M J Costa.
FOTOSSÍNTESE.
PROCESSOS ENERGÉTICOS: FOTOSSÍNTESE E RESPIRAÇÃO
Respiração celular.
Células e energia Na fotossíntese, a energia luminosa é convertida em energia química contida em moléculas orgânicas. As moléculas orgânicas podem ser.
FOTOSSÍNTESE Marcio Barbieri.
Prof. Luciene Rabelo Bioquímica e Metabolismo dos Carboidratos.
CADEIA RESPIRATÓRIA.
Transformação e utilização de energia pelos seres vivos Obtenção de energia 1.
PROCESSOS ENERGÉTICOS CELULARES
Transcrição da apresentação:

METABOLISMO MICROBIANO

Processos bioquímicos na produção de energia

GLOSSÁRIO ADP: difosfato de adenosina ATP: trifosfato de adenosina, um nucleotídeo formado por uma base nitrogenada- a adenina, um açúcar - a ribose e três moléculas de ácido fosfórico Função: armazenar energia

NAD: nicotinamida-adenina dinucleotídeo Função: transportador hidrogênio NADH: nicotinamida-adenina dinucleotídeo FAD: flavina-adenina dinucleotídeo FADH: flavina-adenina dinucleotídeo

ENERGIA DA CÉLULA Uma célula viva requer energia para realizar diferentes tipos de trabalho, incluindo: Biossíntese das partes estruturais da célula, tais como paredes celulares, membrana ou apêndices externos; Síntese de enzimas, ácidos nucleicos, polissacarídeos, fosfolipídeos e outros componentes químicos da célula; Reparo de danos e manutenção da célula em boas condições; Crescimento e multiplicação; Armazenamento de nutrientes e excreção de produtos de escória; Mobilidade

ENERGIA DA CÉLULA Obtida através da quebra de moléculas orgânicas Armazenada na forma de ATP Utilizada na síntese de moléculas ou outras funções celulares

TIPOS DE RESPIRAÇÃO ANAERÓBIA Ausência de O2 AERÓBIA Presença de O2

RESPIRAÇÃO ANAERÓBIA Também chamada de fermentação (quebra parcial da glicose na ausência de O2) Ocorre, por exemplo, em organismos unicelulares Fermentação láctica Fermentação alcoólica Vinho, cerveja, aguardente Fermentação acética Vinagre

RESPIRAÇÃO ANAERÓBIA Fermentação láctica Glicose (C H O) é degradada em duas moléculas menores, com três átomos de carbono, o ácido pirúvico (C H O) glicólise Gera 2 moléculas de ATP C H O 2C H O + 2ATP

Fermentação Láctica

RESPIRAÇÃO AERÓBIA Etapas Glicólise Ciclo de Krebs Cadeia Respiratória

RESPIRAÇÃO AERÓBIA Glicólise Ocorre no citoplasma e consiste na quebra parcial da molécula de glicose, carregando energeticamente duas moléculas de ATP, liberando duas moléculas de ácido pirúvico que serão utilizadas na próxima etapa. A glicólise da respiração é idêntica à da fermentação.

GLICÓLISE

Ciclo de Krebs - Ocorre no interior das mitocôndrias, mais especialmente na matriz mitocondrial. - Neste ciclo, as duas moléculas de ácido pirúvico (CHO) resultantes da glicólise, serão desidrogenadas (perdem hidrogênio) e descarboxiladas (perdem carbono). Os hidrogênios retirados são capturados por aceptores de hidrogênio, que podem ser o NAD (nicotinamida-adenina dinucleotídio) ou FAD (flavina-denina dinucleotídio), com a conseqüente formação de NADH e FADH.

Ciclo de Krebs O ácido pirúvico, perdendo hidrogênio e carbono, converte-se em aldeído acético. O aldeído acético se reúne a uma substância denominada coenzima A (CoA), formando acetil-CoA A acetil-CoA combina-se a um composto de quatro átomos de carbono, já existente na matriz mitocondrial, denominado ácido oxalacético. Nesse momento inicia-se propriamente o ciclo de Krebs.

- Ciclo de Krebs A coenzima A apenas ajuda o aldeído acético a se ligar ao ácido oxalacético, e não permanece no ciclo. Forma-se um composto de seis átomos de carbono, que é o ácido cítrico. Este ácido possui três carboxilas (-COOH); dessa forma o ciclo de Krebs é também conhecido como ciclo do ácido cítrico, ou seja, do ácido tricarboxílico.

Ciclo de Krebs O ácido cítrico sofre descarboxilações e desidrogenações, resultando em vários compostos intermediários. No final do processo, o ácido oxalacético é regenerado e devolvido à matriz mitocondrial. Nesse processo, cada acetil-CoA degradada libera três moléculas de NADH e uma molécula de FADH, duas moléculas de CO, que são expedidas para o meio, e uma molécula de ATP.

CICLO DE KREBS

Cadeia Respiratória Esta etapa ocorre nas cristas mitocondriais do interior das mitocôndrias. As moléculas de hidrogênio retiradas da glicose pelas moléculas de NAD e FAD, produzindo NADH e FADH,durante a glicólise e o ciclo de Krebs, serão transportadas até o oxigênio, formando moléculas de água, liberando energia para a produção de ATP. Na cadeia respiratória, as moléculas de NAD e FAD funcionam como transportadoras de hidrogênio. A combinação de hidrogênio com oxigênio não se realiza de forma direta.

Cadeia Respiratória Existem então, proteínas intermediárias denominadas citocromos, que permitem a liberação gradativa de energia. As proteínas citocromos têm o papel de transportar os elétrons dos hidrogênios gradativamente. Os hidrogênios liberam energia, utilizada na fosforilação (formação de ATP a partir de ADP+P). Depois de descarregados, já no final da cadeia respiratória, o hidrogênio combina-se com o oxigênio, formando água . Por ocorrer na presença do oxigênio, a fosforilação é denominada oxidativa.

CADEIA RESPIRATÓRIA

SALDO ENERGÉTICO Etapa Hidrogênio ATP Glicólise 2 NADH 4 ATP Ciclo de Krebs (2 moléculas de ácido pirúvico, portanto 2 voltas) 8 NADH 2 FADH 2 ATP Cadeia respiratória 10 NADH 30 ATP 2 FADH 4 ATP Total Geral 40 ATP Gasto 2 ATP na glicólise -2 ATP Saldo líquido 38 ATP

SALDO ENERGÉTICO RESPIRAÇÃO AERÓBIA C H O 6CO2 + 6H2O+ 38ATP

FOTOSSÍNTESE Um dos processos mais importantes na terra, realizado por organismos autotróficos, que possibilita a conversão da energia luminosa em energia química, a qual é então utilizada para a conversão do CO2 da atmosfera em compostos de carbono reduzidos, especialmente açúcares. Neste processo, os elétrons são obtidos a partir dos átomos de hidrogênio da água. A fotossíntese pode ser dividida em duas etapas: fase clara e fase escura. Na fase clara, a energia luminosa é utilizada na conversão de ADP a ATP e na redução de NADP a NADPH. Há ainda a fase escura, os elétrons são utilizados, juntamente com o ATP, para reduzir o CO2 a compostos orgânicos.

Reações luminosas: correspondem à fotofosforilação, onde a energia luminosa é absorvida pelos pigmentos (clorofila, bacterioclorofila), excitando os elétrons, que passam para a primeira de uma série de moléculas transportadoras, semelhante à cadeia de transporte de elétrons. Com isso, há a passagem de prótons pela membrana, com a conversão de ADP em ATP. A fotofosforilação pode ser de dois tipos: cíclica e acíclica. No processo cíclico, o elétron retorna à clorofila, enquanto na acíclica, processo mais comum, os elétrons liberados não retornam à clorofila, sendo incorporados ao NADPH. Os elétrons perdidos são substituídos por outros, provenientes da água ou outro composto oxidável, tal como H2S.

Na cíclica, quanto há a absorção dos quanta pela bacterioclorofila, a molécula se excita, perdendo um elétron, tornando-se um agente oxidante potente. O elétron é transferido num processo semelhante a CTE (Ferredoxina – ubiquinona – cit.b – cit.f) e retorna à bacterioclorofila. Entre b e f há a produção de ATP. Na acíclica (algas) há dois sistemas de pigmentos que também perdem elétrons, passam por um processo semelhante à CTE, mas o elétron é usado para reduzir o NADP a NADH. Reações escuras: não requerem a luz para que ocorram e incluem o ciclo de Calvin-Benson, onde o CO2 é fixado.

Outros tipos metabólicos Fotoautotróficos: Utilização de compostos inorgânicos como doadores: Ocorre nos quimiolitotróficos, sendo as fontes o H2S, H2 e NH3. Os processos são similares à respiração aeróbia. A fonte de carbono é geralmente o CO2. Quimiolitotróficos: O CO2 é reduzido a gliceraldeído 3P (fixação), que será metabolizado via o ciclo de Calvin. A energia para a realização destes processos advém da oxidação de compostos inorgânicos (H2, NH4, NO3). As bactérias púrpuras e verdes usam a luz para produzir ATP; produzem NADPH a partir da oxidação de H2S ou compostos orgânicos (fotossíntese anoxigênica). As algas e cianobactérias geralmente obtém o NADPH pela hidrólise da água, sendo um evento mediado pela luz (oxigênica).

Processos bioquímicos na utilização de energia

Generalizações sobre as vias biossintéticas: Processos biossintéticos: aqueles nos quais os constituintes químicos complexos de uma célula são construídos. Generalizações sobre as vias biossintéticas: As vias biossintéticas começam com a síntese das unidades estruturais necessárias para a produção de substâncias mais complexas; As unidades estruturais são então ativadas, usualmente com a energia das moléculas de ATP. Essa energia é necessária para estabelecer as ligações covalentes que subsequentemente irão ligar as unidades estruturais. As unidades estruturais ativadas são unidas uma à outra para formar substâncias complexas que se tornam parte estrutural ou funcional da célula.

BIOSSÍNTESE DE COMPOSTOS NITROGENADOS Biossíntese de aminoácidos e proteínas Biossíntese de nucleotídeos e ácidos nucleicos BIOSSÍNTESE DE LIPÍDEOS Biossíntese de ácidos graxos de cadeia longa Biossíntese de fosfolipídeos BIOSSÍNTESE DE CARBOIDRATOS Biossíntese de peptideoglicano de parede celular

A célula também requer energia para executar outras funções celulares além da síntese de constituintes químicos complexos. Por exemplo, uma célula bacteriana utiliza energia para operar os mecanismos de transporte que conduzem os nutrientes do ambiente para dentro da célula. Outro processo que requer energia, mas não envolve biossíntese, é a atividade do flagelo na motilidade celular.