A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Roberto Cristóvão

Apresentações semelhantes


Apresentação em tema: "Prof. Roberto Cristóvão"— Transcrição da apresentação:

1 Prof. Roberto Cristóvão robertocristovao@gmail.com
Aula 16 Convergência Absoluta, Testes da Razão e da Raiz

2 Convergência Absoluta
Dada qualquer série , podemos considerar a série correspondente cujos termos são os valores absolutos dos termos da série original.

3 Definição Uma série é dita absolutamente convergente se a série de valores absolutos for convergente. Obs.: Se for uma série com termos positivos, então e assim a convergência absoluta é a mesma coisa que a convergência nesse caso.

4 Exemplo 1 A série é absolutamente convergente porque é uma p-série convergente (p=2).

5 Exemplo 2 Sabemos que a série harmônica alternada é convergente mas não é absolutamente convergente, porque a série de valores absolutos correspondente é

6 Exemplo 2 que é a série harmônica (p-série com p=1). e é portanto, divergente.

7 Definição Uma série é chamada condicionalmente convergente se ela for convergente, mas não for absolutamente convergente. O Exemplo 2 mostra que a série harmônica alternada é condicionalmente convergente.

8 Teorema Se uma série for absolutamente convergente, então ela é convergente.

9 Exemplo 3 Determine se a série é convergente ou divergente. Solução: Podemos aplicar o Teste da Comparação à série de valores absolutos

10 Teste de Comparação no Limite
Exemplo 3 Como temos Sabemos que é convergente (p-série com p=2) e, assim, é convergente. Então a série dada é convergente.

11 O Teste da Razão Se então a série é
absolutamente convergente (e portanto convergente . (ii) Se ou então a série é divergente. (iii) Se o Teste da Razão não é conclusivo; isto é, nenhuma conclusão pode ser tirada sobre a convergência ou divergência de

12 Exemplo 4 Teste a série quanto a convergência absoluta. Solução:
Usamos o Teste da Razão com

13 Exemplo 4 Então, pelo Teste da Razão, a série dada é absolutamente convergente e, portanto, convergente.

14 Exemplo 5 Teste a convergência da série Solução: Como os termos são positivos, não precisamos dos símbolos de valor absoluto.

15 Exemplo 5 quando Com a série dada é divergente pelo Teste da Razão.

16 Observação Embora o Teste da Razão funcione no Exemplo 5, um método mais simples é usar o Teste para Divergência. Segue que não tende a 0 quando Portanto a série dada é divergente.

17 Observação O teste a seguir é conveniente para ser aplicado quando ocorrem potências de .

18 O Teste da Raiz Se então a série
é absolutamente convergente (e portanto convergente). (ii) Se ou então é divergente. (iii)Se o Teste da Raiz não é conclusivo.

19 Observação Se então a parte (iii) do teste da Raiz não dá informação. A série pode convergir ou divergir. Se no Teste da Razão, não tente o teste da Raiz, porque será novamente 1.

20 Exemplo Teste a convergência da série Solução: Então, a série dada converge pelo Teste da Raiz.

21 Obrigado !


Carregar ppt "Prof. Roberto Cristóvão"

Apresentações semelhantes


Anúncios Google