Carregar apresentação
A apresentação está carregando. Por favor, espere
1
Exponential Random Graph Models
Deive Ciro de Oliveira Unifal-mg
2
Sumário Modelos Probabilísticos Inferência
Estimação Testes de Hipóteses Modelos Lineares Generalizados Modelos Exponenciais para Grafos Aleatórios Aplicação
3
Modelos Probabilísticos
Espaço Amostral e de Eventos Espaço Amostral (S): “Conjunto de resultados” Espaço de Eventos (E): “Conjunto de Subconjuntos dos resultados”
4
Modelos Probabilísticos
Exemplos: Lançamento de uma moeda S={H,T}, E={Ø,{H},{T},{H,T}} Lançamento de um dado S={1,2,3,4,5,6} E={Ø,{1},{2},..{1,2},{1,3}...,{1,2,3},{1,2,4},...{1,2,3, 4},{1,2,3,5},..{1,2,3,4,5,6}}
5
Modelos Probabilísticos
Probabilidade (definida sobre eventos)
6
Modelos Probabilísticos
Exemplos Experimento: Lançamento de Moeda i) P(Ø)=0, P({H})=0.5, P({T})=0.5, P({H,T})=1 ii) P({H,T})=1 iii) P({H}U{T})=P({H})+P({T})= =1
7
Modelos Probabilísticos
Probabilidade Condicional Dados os eventos E e F:
8
Modelos Probabilísticos
Probabilidade Condicional Exemplo: Cartas embaralhadas e numeradas de 1 a 10. Retirada uma carta, que é ao menos 5, qual a probabilidade de desta ser um 10?
9
Modelos Probabilísticos
Independência Dois eventos E e F , onde P(E)>0 e P(F)>0, são independentes se:
10
Modelos Probabilísticos
Independência Lançamento de dois dados, com os eventos: E1: soma dos dados é 6 E2: soma dos dados é 7 F: o primeiro dados é 4 Eventos Independentes Eventos dependentes
11
Modelos Probabilísticos
Teorema de Bayes Teoria dos conjuntos
12
Modelos Probabilísticos
Teorema de Bayes Jogo das Portas (Monty Hall)
13
Modelos Probabilísticos
14
Modelos Probabilísticos
Teorema de Bayes Solução C=Porta do carro S=Porta do jogador H=Porta do apresentador
15
Modelos Probabilísticos
Variável Aleatória Definição: é uma função V.A. CD Espaço de Eventos (S)
16
Modelos Probabilísticos
Variável Aleatória Exemplo: Seja X (Variável Aleatória) a soma do resultado do lançamento de dois dados
17
Modelos Probabilísticos
Variável Aleatória Importante: Estudos de Variáveis Aleatórias se desvincula dos eventos. Não preciso saber a natureza do evento para estudar a Variável Aleatória Notação X representa a V.A. (Maiúsculo) x representa um valor de V.A. (Minúsculo)
18
Modelos Probabilísticos
Tipos de Variável Aleatória De acordo com sua imagem Quantitativas vs Qualitativas (Quantitativas) Discretas vs. Contínuas (Qualitativas) Nominal vs Ordinal
19
Modelos Probabilísticos
Variáveis Aleatórias admitem: Probabilidade Função Acumulada F(x)=P(X ≤ x) Massa (Discretas) p(x)=P(X = x) * ERGM
20
Modelos Probabilísticos
Variáveis Aleatórias admitem: Probabilidade Massa (Discretas paramétricas) Binomial Bernoulli Geométrica Poisson
21
Modelos Probabilísticos
Variáveis Aleatórias admitem: Probabilidade Densidade (f(x))
22
Modelos Probabilísticos
Variáveis Aleatórias admitem: Probabilidade Densidade (Paramétricas) Uniforme Exponencial Gama
23
Modelos Probabilísticos
Variáveis Aleatórias admitem: Probabilidade Distribuição Normal OUTRAS DISTRIBUIÇÕES
24
Modelos Probabilísticos
Resumo Variável Aleatória Distribuição de Probabilidade Parâmetros ( θ ) Distribuição Normal ( θ = (μ,σ)) Distribuição Gamma ( θ = (λ,α)) Distribuição Binomial ( θ = (n,p)) Distribuição Bernoulli ( θ = (p)) Distribuição Poisson (θ = (λ))
25
Modelos Probabilísticos
Função de VEROSSIMILHANÇA Probabilidade: f ( X | θ ) Função de X dado θ Verossimilhança (likehood): L ( X | θ ) Função de θ dado Log-Verossimilhança (log-likehood): log(L ( X | θ ))
26
Inferência (Estimação)
Objetivo: Dada uma amostra (conjunto de observações) de uma variável aleatória, obter estimadores (função das observações) do parâmetro θ do modelo probabilístico adotado. Tipos: Pontual Intervalar
27
Inferência (Estimação)
Métodos (Pontual): Mínimos Quadrados Momentos Máxima Verossimilhança Inferência Bayesiana
28
Inferência (Estimação)
Máxima Verossimilhança: “O que acontece é o mais verossímil” = arg max Θ
29
Inferência (Estimação)
Maximizando Log-Verossimilhança = arg max Θ
30
Inferência (Teste de Hipótese)
Dados: Ho: Hipótese sobre θ H1: Hipótese alternativa sobre θ Teste de hipótese: i - Quando (valores amostrais) aceitar Ho como verdadeira ii – Quando (valores amostrais) rejeitar Ho como verdadeira assumindo H1 como verdadeira.
31
Inferência (Teste de Hipótese)
32
Inferência (Teste de Hipótese)
Teste de razão de Verossimilhança:
33
Inferência (Teste de Hipótese)
Avaliando o Teste: Probabilidade de Erro Tipo I (Rejeitar Ho verdadeira) Probabilidade de Erro Tipo II (Aceitar Ho falsa)
34
Inferência (Teste de Hipótese)
Podemos avaliar um teste: P(Erro I) e P (Erro II) -2log(λ(x)) assintoticamente tem uma distribuição qui-quadrado!
35
Inferência (Teste de Hipótese)
Exemplo: A Moeda é Viciada? 10 lançamentos (H,T,H,H,H,H,H,T,H,H ) (Xi resultado de cada lançamento). Ho: p=0.5 H1: P≠0.5 Teste de razão de verossimilhança:
36
Modelos Exponenciais para Grafos Aleatórios (ERGM)
X: Grafo com número de nós fixo Zi(x): variável explanatória i do grafo x número de arestas, numero de triângulos de tamanho 3. Θi: Valor real (Θ é um vetor)
37
Modelos Exponenciais para Grafos Aleatórios (ERGM)
K(Θ) é uma constante normalizadora Aplicando exponencial
38
Modelos Exponenciais para Grafos Aleatórios (ERGM)
Roteiro (R statistical software): Cálculo de Probabilidade Métodos de Estimação Pseudo Máxima Verossimilhança (MPLE) MCMC Máxima Verossimilhança (MLE Qualidade de Ajuste (gof) Teste de Razão de Verossimilhança Agrupamento
Apresentações semelhantes
© 2025 SlidePlayer.com.br Inc.
All rights reserved.