A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Elisson de Andrade

Apresentações semelhantes


Apresentação em tema: "Prof. Elisson de Andrade"— Transcrição da apresentação:

1 Prof. Elisson de Andrade eapandra@uol.com.br
Álgebra matricial Prof. Elisson de Andrade

2 Dica: anote todos os passos, pois ao final de cada explicação, terá que fazer o mesmo exercício com outros números

3 𝑎 11 𝑎 12 𝑎 13 𝑎 21 𝑎 22 𝑎 23 𝑎 31 𝑎 32 𝑎 33 Matriz quadrada 3x3 Notação para matrizes: m x n (linha por coluna) 𝑎 11 𝑎 21 𝑎 31 Vetor coluna 3x1

4 Soma e subtração Duas matrizes só podem ser somadas ou subtraídas se tiverem a mesma dimensão = = Resolva: = 19−6 3−8 2−1 0−3 = 13 −5 1 −3

5 Multiplicação Escalar
Multiplicação de uma matriz por um número (um escalar) 7 3 − = 21 −7 0 35 Resolva: = 19−2.6 3−2.8 2−2.1 0−2.3 = 7 −13 0 −6

6 Multiplicação de Matrizes
Se queremos multiplicar duas matrizes: AB A coluna de A precisa ter a mesma dimensão da linha de B Ex: A (1x2) e B (2x3) 𝐵= 𝐴= 2 1 A dimensão da matriz resultante de AB será 1x3 𝐴𝐵=𝐶= 𝑐 11 𝑐 12 𝑐 13

7 Multiplicação de Matrizes
Multiplica-se cada linha de A por cada coluna de B 𝐵= 𝐶= 𝑐 11 𝑐 12 𝑐 13 DADO: 𝐴= 2 1 𝑐 11 = =8 𝑐 12 = =8 𝑐 13 = =1 𝐶=

8 Multiplicação de Matrizes
Multiplique as matrizes abaixo DADO: 𝐴= 𝐵= 5 9 Resolvendo: 𝐶= 𝐶=

9 Matriz Identidade É uma matriz quadrada com vários números 1 na sua diagonal principal, e zero em todas as demais posições 𝐼 3 = 𝐼 2 = Importância: desempenha papel similar ao número 1 em álgebra de números

10 Matriz Identidade Exemplo: Calcule IA 𝐼 = 1 0 0 1 𝐴= 1 2 3 2 0 3
𝐼 = 𝐴= Resultado: 𝐼𝐴=𝐴=

11 Matriz Nula É uma matriz quadrada com vários números 0 em todas suas posições e não precisa ser quadrada 0= 0= Importância: ao multiplicarmos uma matriz por uma matriz nula, teremos uma matriz nula como resposta

12 Matriz Transposta Quando linhas e colunas são trocadas: a primeira linha vira primeira coluna e assim por diante. Seja: 𝐴= Sua Transposta será: 𝐴 ′ =

13 Represente a transposta da seguinte matriz
Matriz Transposta Represente a transposta da seguinte matriz 𝐴= −9 4 Sua Transposta será: 𝐴 ′ = 3 8 −

14 Matriz Inversa Só é possível calcular a Inversa, se a matriz é QUADRADA Mas nem toda matriz quadrada tem inversa (condição necessária e não suficiente) Se possui inversa: matriz não-singular Se não possui: matriz singular Portanto, primeiro desafio: testar a não singularidade da matriz

15 Matriz Inversa Uma vez que a matriz é quadrada (condição necessária), precisamos saber se suas colunas (ou linhas) são independentes (condição suficiente) Podemos testar a não-singularidade de uma matriz utilizando-se de determinantes

16 Cálculo do determinante de segunda ordem (por ser uma matriz 2x2)
Em uma matriz 2x2 o determinante é calculado fazendo o produto dos elementos da diagonal principal, e depois subtraindo do produto dos outros dois números 𝐴= Cálculo do determinante de segunda ordem (por ser uma matriz 2x2) 𝐴 = =10.5 −8.4=18

17 Determinante Em uma matriz 3x3 o determinante é calculado da seguinte forma: 𝐴= 𝐴 = Cálculo do determinante de terceira ordem (por ser uma matriz 3x3) 𝐴 = − =−9

18 Determinante Em uma matriz 4x4 (ou maior) precisamos utilizar a expansão de Laplace (mas por ora, vamos continuar na matriz 3x3 só para explicitar o método): Vamos pegar o primeiro elemento e eliminar sua linha e sua coluna. Vamos achar o menor do elemento a11 (e assim para os outros elementos da linha) 𝐴= 𝑀 11 = 𝑀 12 = 𝑀 13 = Cofator: será o sinal de Mij. Quando i+j é par o sinal de Mij será mantido, se a soma for ímpar, o sinal deverá ser invertido. No nosso caso, multiplicaremos cada menor pelo seu respectivo aij, e aplicaremos a regra de sinal de cofator. 𝐴 =2 5.9−8.6 −1 4.9−7.6 +3(4.8−5.7)=−9

19 Calcule o determinante a seguir pelo Método de Laplace
𝐴= − 𝑀 11 = 𝑀 12 = 𝑀 13 = 𝐴 =−7 1.5−6.4 −0 9.5−0.4 +3(9.6−0.1)=295

20 Calcule o determinante a seguir pelo Método de Laplace
𝑀 11 = − 𝑀 12 = − − 𝑀 13 = − − 𝑀 14 = − 𝐴 =3 −75 −4 − −2 50 =−85

21 Voltando à Matriz Inversa
Uma vez que a matriz é quadrada (condição necessária), precisamos saber se suas colunas (ou linhas) são independentes (condição suficiente) Podemos testar a não-singularidade de uma matriz utilizando-se de determinantes: se 𝐴 ≠0 Matriz é não-singular e sua inversa existe

22 Matriz Inversa 𝐴= 3 2 1 0 Vamos achar a inversa da seguinte matriz
𝐴= Vamos achar a inversa da seguinte matriz Já que 𝐴 ≠0 (ou seja 𝐴 =−2), isso significa que a inversa 𝐴 −1 existe. O próximo passo é criar uma matriz de cofatores C (escolhendo cada elemento aij, eliminando sua linha e coluna respectiva, e achando o determinante do restante dos elementos (e fazendo a regra do sinal). Como essa matriz é 2x2, o processo se torna mais fácil. 𝐶= 0 −1 −2 3

23 Matriz Inversa O próximo passo é TRANSPOR a matriz de cofatores, que denominaremos de Matriz Adjunta de A 𝐶= 0 −1 −2 3 𝐴𝑑𝑗 𝐴= 0 −2 −1 3 Logo, transpondo C, temos: Assim, a INVERSA de A será dada por: 𝐴 −1 = 1 𝐴 𝐴𝑑𝑗 𝐴= 1 −2 0 −2 −1 3 = /2 −3/2

24 Uma questão interessante...
𝐴 −1 = /2 −3/2 𝐴= Temos as duas matrizes Multiplique as duas matrizes: 𝐴.𝐴 −1 3.0 +( ) (2.− 3 2 ) ( ) (0.− 3 2 ) = =𝐼 Na álgebra com números, um número dividido por ele mesmo dá 1: a/a = 1 Que em outra notação ficaria a.a-1 = 1 Em álgebra matricial, não é possível dividir matrizes. Mas se der para fazer uma analogia vemos que A.A-1 = I Ou seja, a multiplicação de uma matriz por sua inversa dá uma coluna principal de 1

25 Calculando o determinante: 𝐴 =99
𝐴= 4 1 − Calculando o determinante: 𝐴 =99 Calcular a inversa de: Matriz de cofatores 𝐶= − − 1 − − − − − 4 − 𝐶= −9 − −8 12 𝐴 −1 = 1 𝐴 𝐴𝑑𝑗 𝐴= − −8 −9 3 12

26 Calculando o determinante: 𝐴 =1
𝐴= Calcular a inversa de: Calculando o determinante: 𝐴 =1 𝐶= − −15 −4 −5 4 1 𝐴 −1 = 1 𝐴 𝐴𝑑𝑗 𝐴= − −15 −4 −5 4 1

27 Resolução de sistemas lineares
Considere o seguinte sistema de equações lineares 5 𝑥 1 +3 𝑥 2 =30 6 𝑥 1 −2 𝑥 2 =8 Esse sistema pode ser expresso em forma de matrizes

28 Resolução de sistemas lineares
𝐴= −2 𝑥= 𝑥 1 𝑥 2 𝑑= 30 8 Logo, temos a seguinte álgebra matricial: 𝐴𝑥=𝑑 Como precisamos isolar 𝑥, vamos pré-multiplicar ambos os lados pela inversa de 𝐴 𝐴 −1 𝐴𝑥= 𝐴 −1 𝑑 de onde sai que 𝑥= 𝐴 −1 𝑑 Ou seja, para achar os valores de 𝑥 basta multiplicar a inversa da matriz 𝐴 pela matriz 𝑑

29 Resolução de sistemas lineares
𝐴= −2 Inverta a matriz A: 𝐶= −2 −6 −3 5 Matriz Cofatores: 𝐴𝑑𝑗 𝐴= −2 −3 −6 5 Matriz Adjunta (transposta): Determinante de A 𝐴 =−28 Inversa: 𝐴 −1 = 1 𝐴 𝐴𝑑𝑗 𝐴= 1 −28 −2 −3 −6 5 = 2/28 3/28 6/28 −5/28

30 Resolução de sistemas lineares
2/28 3/28 6/28 −5/ Faça a multiplicação: 𝐴 −1 𝑑 ( )+( ) ( )+(− ) − 40 28 Logo, se 𝑥= 𝐴 −1 𝑑: 𝑥 1 𝑥 2 = 3 5

31 Resolver esses sistemas pode ser bem mais simples utilizando a REGRA DE CRAMER Principalmente em Matrizes 3x3

32 Regra de Cramer Ax = d 7 −1 −1 10 −1 1 6 3 −2 𝑥 1 𝑥 2 𝑥 3 = 0 8 7
𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑟: 7 𝑥 1 − 𝑥 2 − 𝑥 3 =0 10 𝑥 1 − 2𝑥 2 + 𝑥 3 =8 6 𝑥 1 + 3𝑥 2 − 2𝑥 3 =7 Ax = d 7 −1 −1 10 − −2 𝑥 1 𝑥 2 𝑥 3 = Pela Regra de Cramer, não precisamos inverter essa matriz

33 Passos Achamos o determinante da Matriz A Aí vamos achar mais 3 determinantes: Substituímos o vetor D na primeira linha de A, e achamos A1 Substituímos o vetor D na segunda linha de A, e achamos A2 Substituímos o vetor D na terceira linha de A, e achamos A3 Por fim, pegamos cada Aj calculado acima e dividimos pelo determinante de A. Logo 𝑥 1 = 𝐴 1 𝐴 , 𝑥 2 = 𝐴 2 𝐴 , 𝑥 3 = 𝐴 3 𝐴

34 Para o nosso exemplo Substituição de d na primeira coluna de A
𝐴 = 7 −1 −1 10 − −2 =−61 𝐴 1 = 0 −1 −1 8 − −2 =−61 Substituição de d na segunda coluna de A Substituição de d na terceira coluna de A 𝐴 2 = 7 0 − −2 =−183 𝐴 3 = 7 − − =−244

35 𝑥 1 = 𝐴 1 𝐴 = −61 −61 =1 𝑥 2 = 𝐴 2 𝐴 = −183 −61 =3 𝑥 3 = 𝐴 3 𝐴 = −244 −61 =4 Tudo resolvido pela regra de Cramer e sem necessidade de inverter a matriz A

36 Exercício 𝑥 1 = 𝐴 1 𝐴 = −5 −5 =1 𝑥 2 = 𝐴 2 𝐴 = 0 −5 =0
𝑥 1 = 𝐴 1 𝐴 = −5 −5 =1 𝑥 2 = 𝐴 2 𝐴 = 0 −5 =0 𝑥 3 = 𝐴 3 𝐴 = 5 −5 =1 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑟: 𝑥 1 +2 𝑥 2 + 𝑥 3 =0 2 𝑥 1 − 𝑥 2 + 𝑥 3 =1 − 𝑥 1 + 3𝑥 2 + 𝑥 3 =−2

37 Exercícios extras no Site
Matriz em EXCEL Chiang em PDF


Carregar ppt "Prof. Elisson de Andrade"

Apresentações semelhantes


Anúncios Google