A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Compostos Aromáticos.

Apresentações semelhantes


Apresentação em tema: "Compostos Aromáticos."— Transcrição da apresentação:

1 Compostos Aromáticos

2 Estrutura de ressonância
Cada hibridação sp2 do C no anel tem uma orbital p não hibridada perpendicular ao anel o qual se sobrepõe à volta do anel.

3 Reacções pouco comuns Alceno + KMnO4  diol (adição) Benzeno + KMnO4  não existe reacção. Alceno + Br2/CCl4  dibrometo (adição) Benzeno + Br2/CCl4  não existe reacção. Com catalisador FeCl3, Br2 reage com benzeno para formar bromobenzeno + HBr (substituição). Duplas ligações permanecem.

4 Estabilidade pouco usual
Hidrogenação de apenas uma ligação dupla do benzeno é endotérmica!

5 Anulenos Todos os hidrocarbonetos conjugados ciclicos são propostos como aromáticos. Contudo, ciclobutadieno é tão reactivo que dimeriza antes de ser isolado. E ciclooctatetraeno adiciona ao Br2 rápidamente.

6 Requisitos para ser Aromático
Estrutura tem que ser ciclica com ligações pi conjugadas. Cada átomo no anel tem que ter uma orbital p não hibridada. As orbitais p orbitals têm que se sobrepôr continuamente à volta do anel. (Normalmente estrutura planar) Composto é mais estável que o seu congenere de cadeia aberta.

7 Regra de Hückel Se o composto tem um anel contínuo de orbitais p em sobreposição e tem 4N + 2 electrões, é aromático. Se o composto tem anel contínuo de orbitais p em sobreposição e tem 4N electrões, é antiaromático.

8 Nomes comuns para os derivados do benzeno

9 Fenil e benzil Fenil indica o anel de benzeno ligado. O grupo benzil tem um carbono adicional.

10 Propriedades físicas Pontos de fusão: São mais simétricos que os correspondentes alcanos, empacotam melhor em cristais, portanto têm pontos de fusão mais elevados. Pontos de ebulição: Dependente do momento dipolar, portanto ortho > meta > para, são benzenos disubstituídos. Densidade: mais densos que os não aromáticos menos denso a que a água. Solubilidade: Geralmente insolúvel em água.

11 Reacções dos Compostos aromáticos

12 Substituição Electrofílica Aromática
Electrófilo substitui o hidrogénio no anel de benzeno. =>

13 Mecanismo

14 Bromação do Benzeno Passo 1: Formação do ião chloronium
Requer um electrófilo mais forte que o Br2. Use um catalisador que é uma base forte de Lewis, FeBr3. Passo 1: Formação do ião chloronium

15 Passo 2: Reacção do ião cloronium com o anel aromático.

16 Passo 3: Protão transfere-se para o FeCl4- forma o HCl, regenera-se o ácido de Lewis (catalisador), edá clorobenzeno.

17 Diagrama de Energia para a Bromação

18 Cloração e Iodinação Bromação é semelhante à cloração. Também pode usar o AlCl3 como catalisador. São ácidos de Lewis. Iodinação requer um agente oxidante acídico, como o ácido nítrico, o qual oxida o iodo a ião iodonium.

19 Nitração do benzeno Use ácido sulfúrico com ácido nitrico para formar o ião nitronium como electrófilo.

20 Sulfonação Trióxido de enxofre, SO3, em ácido sulfúrico fumegante é o electrófilo.

21 Alquilação de Friedel-Crafts
Alquilação de Friedel-Crafts forma a nova ligação C-C entre o anel aromático e um grupo alquilo.

22 Alquilação de Friedel-Crafts
Passo 1: Formação do catião alquilo.

23 Alquilação de Friedel-Crafts
Passo 2: Reacção do catião com o anel aromático. Passo 3: Transferência regenera o anel aromatico

24 Alquilação de Friedel-Crafts
Duas grandes limitações nas alquilações de F-C. É praticável com carbocatiões estáveis, como 2° e 3°. Falha com anel de benzeno já com grupos electrão-atratores

25 Acilação de Friedel-Crafts
Tratamento do anel aromático com cloreto de ácilo na presença de AlCl3. Cloreto de Acilo (acil) : o derivado do ácido carboxilico no qual o grupo –OH é substituido pelo cloro.

26 Acilação de Friedel-Crafts
O electrofilo é um ião acilium gerado pela reacção do cloreto de ácidoe um ácido de Lewis (catalisador).

27 Outras alquilações do Benzene
Formação de carbocatiões Tratar um alceno com ácido protico,mais comum H2SO4 ou H3PO4. Tratar um alcool com H2SO4 ou H3PO4.

28 Nitração do tolueno Tolueno reage 25 vezes mais rápido que o benzeno. O grupo metilo é activador. O produto é uma mistura de moléculas orto e para substituidas.

29 Complexo Sigma Intermediário é mais estável se a nitração ocorre nas posições orto ou para.

30 Diagrama de energia

31 Substituintes activadores, O-, P-
Grupos alquilo estabilizam o complexo de sigma por indução, dão electrões através da ligação sigma. Substituintes com par de electrões não partilhados estabilizam o complexo sigma por ressonância.

32 O grupo amino Anilina reage com o água de bromo (sem catalisador) para produzir o tribrometo. Bicarbonato de sódio é adicionado para neutralizar o HBr que também é formado.

33 Sumário de activadores

34 Substituintes directores desactivantes Meta-
Reacções de substituição electrofílica para o nitrobenzeno são 100,000 vezes mais lentas que o benzeno. A mistura de produtos contêm na maioria o isómero meta, sómente pequenas quantidades de isómeros de orto e para. Desactivadores directores meta, desactivam todas as posições no anel mas a posição é menos desactivada.

35 Substituição orto no nitrobenzeno

36 Substituição para no nitrobenzeno
=>

37 Substituição meta no nitrobenzeno

38 Diagrama de energia

39 Estrutura dos desactivadores meta
O átomo ligado ao anel aromático terá uma carga parcialmente positiva. A densidade electrónica é puxada indutivamente ao longo da ligação sigma, portanto o anel é menos rico em electrões que o benzeno.

40 Sumário dos desativadores

41 Mais desativadores

42 Halobenzenos Halogénios são desactivadores na substituição electrofilica, mas são directores orto e para. Dado que os halogénios são muito electronegativos, eles retiram densidade electrónica do anel por indução ao longo da ligação sigma. Mas os halogénios têm pares de electrões não partilhados que podem estabilizar o complexo sigma por ressonância.

43 Complexo sigma para bromobenzene
Ataques orto e para produz ião bromonium e outras estruturas de ressonância. Não se forma ião bromonium com o possivel ataque na posição meta.

44 Diagrama de energia

45 Sumário dos efeitos directores

46 Substituintes múltiplos
O substituintes mais fortemente activador determinará a posição do substituinte seguinte. Pode haver misturas.

47 Fim


Carregar ppt "Compostos Aromáticos."

Apresentações semelhantes


Anúncios Google