Carregar apresentação
PublicouJoão Vítor Lima Faria Alterado mais de 9 anos atrás
1
2- Estrutura e propriedades das moléculas orgânicas
2
Propriedades ondulatórias dos electrões
A função matemática Ψ, descreve o tamanho, a forma e a orientação Amplitude pode ser positiva ou negativa Nódulo: amplitude é zero + _ -
3
Interacções das ondas Combinação de orbitais atómicas
Entre átomos diferentes e formação de ligações No mesmo átomo é a hibridização Conservação de orbitais As ondas que estão na mesma fase a amplitude aumenta Ondas que estão fora de fase anulam-se
4
Ligação Sigma A densidade electrónica fica entre o núcleo
Uma ligação pode ser formada por orbitais s-s, p-p e s-p, ou sobreposição de orbitais hibridas; A orbital molecular é de energia mais baixa do que as orbitais atómicas A orbital molecular antiligante é de energia superior às orbitais atómicas
5
Sobreposição s-s: H2
6
Sobreposição p-p: Cl2 Sobreposição construtiva ao longa do mesmo eixo forma a ligação sigma
7
Ligação Pi Ligação Pi forma-se depois da ligação sigma
Sobreposição lado a lado das orbitais paralelas p
8
Ligações múltiplas A ligação dupla (2 pares de electrões são partilhados) consiste numa ligação sigma e numa ligação pi. Ligação tripla (3 pares de electrões partilhados) consiste numa ligação sigma e duas pi.
9
Forma Molecular Ângulos da ligação não podem explicar com orbitais simples s e p. Use a teoria VSEPR (Valence shell electron pair repulsion theory). As orbitais hibridadas são de mais baixa energia porque os electrões são mais afastados. Hibridização éitais atómicas combinação linear das orb dentro de um átomo, antes do formação da ligação.
10
Orbitais hibrídas sp 2 Pares de electrões Geometria linear
Ângulo da ligação de 180º
11
Orbitais hibridas sp2 3 pares de electrões Geometria Trigonal Planar
Ângulos de 120º
12
Orbitais hibridos sp3 4 Pares de electrões Geometria tetraédrica
Ângulos de 109,5º
13
Rotação à volta das ligações
As ligações simples rodam livremente As ligações duplas não podem rodar livremente a não ser que uma se quebre
14
Isomerismo Moléculas que têm a mesma formula molecular, mas diferem no arranjo dos seus átomos, são chamados Isómeros. Isómeros constitucionais diferem na sua sequência de ligação. Estereoisómeros diferem sómente no arranjo dos átomos do espaço.
15
Isómeros estruturais
16
Estereoisómeros => Trans - across Cis - same side
Isómeros cis-trans também chamados isómeros geométricos. Têm que ter dois grupos diferentes ligados ao átomo de carbono sp2. No cis-trans isomers possible =>
17
Momentos Dipolares São devidos a diferenças de electronegatividade
Depende da quantidade de carga e da distância de separação Em debyes, = 4.8 x (electron charge) x d(angstroms)
18
Momento Dipolar Molecular
Depende da polaridade da ligação e dos ângulos de ligação Vector soma dos momentos dipolares das ligações Pares de electrões não ligantes contribuem para o momento dipolar
19
Forças Intermoleculares
A força das atracções entre moléculas influência o ponto de fusão, ponto de ebulição e solubilidade para sólidos e liquidos Classificação depende da estrutura: Interacções dipolo-dipolo Dispersão London Ligações de hidrogénio.
20
Forças Dipolo-Dipolo Entre moléculas polares
O termino positivo de uma molécula alinha com a parte negativa de outra molécula A força atractiva baixa a energia Dípolos maiores causam pontos de ebulição elevados e calores de vaporização igualmente elevados
21
Dipolo-Dipolo
22
Dispersão de London Entre moléculas não polares
Interacções temporárias dipolo-dipolo Átomos maiores são mais polarizáveis Ramificação baixa o ponto de ebulição porque a superfície de contacto entre as moléculas diminui
23
Dispersões
24
Ligação de hidrogénio Forte atracção dípolo-dípolo
Moléculas orgânicas têm que ter N-H ou O-H O hidrogénio de uma molécula é fortemente atraído a um par de electrões de outra molécula O-H é mais polar que o N-H, pelo que fortifica a ligação de hidrogénio
25
Ligações H
26
Pontos de ebulição e forças Intermoleculares
27
Solubilidade Semelhante dissolve semelhante
Soluto polar dissolve-se em solventes polares Solutos não polares dissolve-se em solventes não polares Moléculas com forças intermoleculares semelhantes misturam-se livremente
28
Soluto iónico com solvente polar
Hidratação liberta energia . Entropia aumenta.
29
Soluto iónico com solvente não polar
30
Soluto não polar com solvente não polar
31
Soluto não polar com solvente polar
32
Classes de compostos Grupos funcionais: são os responsáveis pelas propriedades dos compostos orgânicos. Ligações múltiplas e ligações carbono-heteroátomo são sitios de reactividade.
33
Hidrocarbonetos Alcano: C-C, carbonos sp3
Cicloalcano: carbonos formam um anel Alceno: C=C, carbonos sp2 Cicloalcano: Dupla ligação no anel Alcino: C≡C, carbonos sp Aromáticos: contêm um anel benzénico
34
Grupos funcionais com heteroátomos
Álcoois, fenois, tióis Éteres e tioeteres Aminas Compostos orgânicos halogenados Aldeídos e cetonas Ácidos carboxílicos Derivados de ácidos carboxílicos: haletos de acilo; anidrido carboxilico; ester; amida
35
Fim T_2
Apresentações semelhantes
© 2024 SlidePlayer.com.br Inc.
All rights reserved.