A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Divisão Tecnologia em Automação

Apresentações semelhantes


Apresentação em tema: "Divisão Tecnologia em Automação"— Transcrição da apresentação:

1 Divisão Tecnologia em Automação
Harmônicos em Instalações de Baixa Tensão

2 Palestrante Marcel Serafim
Engenharia de Aplicação de Produtos e Serviços Tel: (11) Cel: (11)

3 Harmônicos em Instalações de Baixa Tensão
O fato das harmônicas estarem relacionadas as instalações consumidoras de energia, atraiu o interesse da comunidade técnica sobre os Harmônicos em Instalações Elétricas. Podemos citar 3 fatores que despertaram o interesse Importância a eficiência energética Sensibilidade dos equipamentos Conscientização dos usuários

4 Introdução Harmônico é um fenômeno físico ondulatório, descrito por uma função seno ou coseno. Cabe lembrar que todo este assunto é determinado pela “Série de Fourier” Esta teoria permite a análise de ondas distorcidas de uma forma simples, usando o recurso da decomposição em formas conhecidas, em função da variável tempo f(t)

5 O que são harmônicos? Harmônica é um tipo específico de perturbação de energia que normalmente é associada a crescente utilização de cargas não lineares. Tecnicamente, harmônica é a componente de uma onda periódica cuja freqüência é um múltiplo inteiro da freqüência fundamental. No caso do Brasil – 60 Hz

6 As freqüências harmônicas
As harmônicas são representadas pelas as freqüências múltiplas da fundamental. Exemplo 2° harmônica é dada por 120 Hz = 2 x 60 Hz 3° harmônica é dada por 180 Hz = 3 x 60 Hz 5° harmônica é dada por 300 Hz = 5 x 60 hz

7 As freqüências harmônicas II
Conseguimos observar a somatória das harmônicas através do gráfico A curva ao lado mostra bem a distorção harmônica, que deixa de ser puramente senoidal e torna-se totalmente distorcida.

8 Ordem, freqüência e seqüência das Harmônicas
As harmônicas são divididas em dois tipos: Harmônicas Impares Harmônicas Pares Outro ponto importante de ser comentado é a seqüência das harmônicas que podem ser dividida em Positiva (+) Negativa (-) Nula (0)

9 Espectro Harmônico Espectro harmônico permite representar em forma de gráfico os valores das harmônicas em suas “ordens” O espectro harmônico é uma representação da forma de onda no domínio da freqüência. Geralmente são analisadas até a 40° harmônica, raramente os sinais superiores a esta ordem não interferem no funcionamento dos sistemas.

10 Espectro Harmônico II Para a verificação dos níveis de harmônicos internacionalmente adotou-se DHT (Distorção harmônica total) THD (Total Harmonic Distorcion) Sendo que estes são determinados em tensão e corrente DTHi (gerados pelas cargas) DTHu (gerados pelas fontes de energia)

11 Origem das Harmônicas Com o aumento de cargas cada vez mais não-lineares nas indústrias, comércios e até mesmo residências, aumentou-se o nível de harmônicos nos sistemas de baixa tensão e até mesmo no sistema de distribuição As cargas geradoras de harmônicas são definidos em 2 tipos Cargas Lineares Cargas não-Lineares

12 Origem das Harmônicas – Cargas Lineares
Genericamente são consideradas cargas lineares aquelas constituídas por resistências, capacitâncias e indutâncias Onde as formas de ondas são senoidais puras. Exemplos Motores Lâmpadas Incandescentes Cargas Resistivas

13 Origem das Harmônicas – Cargas Não-Lineares
Genericamente são consideradas cargas não-lineares cargas onde se tem o controle total ou parcial do processo. Ex: SCR´s, IGBT´s Atualmente as cargas não-lineares são classificas em 3 categorias Cat. 1 – Equipamentos operativos com arco-Voltaico Cat. 2 – Equipamentos de núcleo magnético saturados Cat. 3 – Equipamentos eletrônicos

14 Origem das Harmônicas – Retificador Carregador

15 Origem das Harmônicas – Variador de Velocidade

16 Origem das Harmônicas – Fonte Monofásica

17 Origem das Harmônicas – Máquina de Solda

18 Origem das Harmônicas – Outros Exemplos
Outros geradores de harmônicos. Dispositivo com núcleo magnético saturável Controladores de tensão Lâmpadas fluorescentes Reatores eletrônicos

19 Problemas e consequências causados pelas Harmônicas
Pode-se dizer que efeitos instantâneos podem se manifestar por meio da ocorrência de perturbações em sistemas de telecomunicações, operações inadequadas, falhas de operações, erros de medições, problemas de acionamentos dentre outros. Exemplos: Transformadores Saturação Magnética Ressonância Motores Elétricos Condutores

20 Problemas e consequências - Transformadores
Podemos citar os problemas mais comuns encontrados nos transformadores devido a presença de harmônico: Sobreelevação térmica; Aquecimento do cobre devido ao efeito pelicular; Aumento das correntes parasitas Focault. Aumento do ruído audível

21 Problemas e conseqüências – Transformadores II

22 Problemas e consequências – Transformadores III
A saturação magnética nos transformadores de potência, provoca o aparecimento de um fluxo adicional no circuito magnético. Desse fato gera deformação da onda de tensão fornecida Ressonância elétrica, um casos mais comuns nos sistemas de baixa tensão.

23 Problemas e consequências – Motores Elétricos
A presença de conteúdo harmônicos na alimentação dos motores geram grandes preocupações como: Perdas no ferro Elevação das perdas no cobre Efeito pelicular Torques negativos Menor rendimento Aumento do ruído audível

24 Problemas e consequências – Motores Elétricos II

25 Problemas e consequências – Condutores Elétricos
Até mesmos os condutores são afetados pelas distorções harmônicas. Os efeitos mais comuns nos condutores são: Aumento do efeito pelicular Efeito de proximidade Subdimensionamento de condutores

26 Problemas e consequências – Capacitores Estáticos
Perante a presença de harmônicas na linha, os capacitores podem ser submetidos a esforços térmicos inadmissíveis sendo: Queimas prematuras Ressonância do capacitor com a linha Explosões Sobreaquecimentos

27 Problemas e conseqüências – Fator de Potência
Outro problema muito comum com a presença de harmônicos é o fator de potência. Com as presença de harmônicos na linha, o cálculo para F.P. feito através do triângulo retângulo passa a ter uma outra componente, introduzindo-se uma nova dimensão Potência Ativa Potência Reativa Potência Aparente

28 Problemas e conseqüências – Sistema de Iluminação
As harmônicas podem afetar sensivelmente a vida útil das lâmpadas. Lâmpadas incandescentes sofrem em quase 50% de redução de sua vida útil. As lâmpadas onde se utilizam reatores, também sofrem com as harmônicas porém de uma menos agressiva, isto devido aos reatores para a ignição da lâmpada.

29 Problemas e conseqüências – Sistemas de Proteção
Os disjuntores, relés ou fusíveis podem vir atuar de uma forma descontrolada quando confrontada com as harmônicas em sistemas. Os problemas mais comuns encontrados Atuação inesperada, mesmo sem falha. Não atuação do circuito de proteção em caso de falha

30 Problemas e conseqüências – Medidores de Energia
Os medidores de energia tipo indução, podem apresentar erros de acordo com os níveis de distorções harmônicas presentes De um modo geral, provocam a alteração da classe de precisão de medição. Os erros podem ser aproximadamente para –10% ou + 10%

31 Soluções para as Harmônicas
Controlar a presença das correntes harmônicas na instalação elétrica é uma tarefa cada vez mais necessária e importante para a indústria. Existem apenas um modo de fazer a total eliminação das harmônicas porém existem meios de minimizar as harmônicas no sistema

32 Soluções para as Harmônicas - Limites

33 Soluções para as Harmônicas - Indutância
A técnica de instalação de uma indutância em série com os equipamentos é muito empregada em UPS, inversores Trata-se de uma solução paliativa que apenas atenua as harmônicas presentes no ponto de instalação Vantagens: Simples e de baixo custo Desvantagens: Eficiência limitada, dimensões muito grande

34 Soluções para as Harmônicas – Filtro LC
Esta técnica é muito parecida com a da indutância, porém com a diferença que este fornece energia reativa para a linha, não sendo necessário um sobredimensionamento do grupo gerador ou consumo maior de energia reativa da rede. Vantagens: Simples e confiável, aumento do fator de potência Desvantagens: Limite restrito de de frequência da harmônica, não pode haver alterações na carga da fábrica

35 Soluções para as Harmônicas – Filtro Ativo
Esta técnica é a única forma de se eliminar 100% das harmônicas Em geral o filtro ativo (FA) gera um sinal de corrente defasado de 180°, eliminado-se assim 100% das harmônicas no sistema Cobrem um espectro de harmônicos da 2° até a 50° harmônica

36 Soluções para as Harmônicas – Filtro Ativo II

37 Soluções para as Harmônicas – Filtro Ativo III

38 Soluções para as Harmônicas – Filtro Ativo IV
Análise do sinal do sistema de B.T. sem o filtro ativo

39 Soluções para as Harmônicas – Filtro Ativo V
Análise do sinal do sistema de B.T. com o filtro ativo

40 Filtro Ativo - PQFA

41 Marcel Serafim Sistemas de Proteção Engenharia de Aplicação Tel: (11) Cel: (11)

42 Dúvidas


Carregar ppt "Divisão Tecnologia em Automação"

Apresentações semelhantes


Anúncios Google