A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Increasing Wind Power Generation Penetration Degree in Brazil: a Challenge for the Brazilian Interconnected Power System Francisco José Arteiro de Oliveira.

Apresentações semelhantes


Apresentação em tema: "Increasing Wind Power Generation Penetration Degree in Brazil: a Challenge for the Brazilian Interconnected Power System Francisco José Arteiro de Oliveira."— Transcrição da apresentação:

1 Increasing Wind Power Generation Penetration Degree in Brazil: a Challenge for the Brazilian Interconnected Power System Francisco José Arteiro de Oliveira Operation Planning and Scheduling Director

2 Agenda Introduction Wind power generation penetration degree increase in the Brazilian Energetic Matrix Characteristics of wind power plants in Brazil Major challenges for the increase of wind generation penetration degree in the Brazilian Interconnected Power System - BIPS Ongoing improvements necessary to connect wind farms to grids with high wind generation penetration degree Conclusions

3 Introduction

4 Brazilian Interconected Power System - BIPS
Isolated systems Brazilian Interconnected Power System +3.400km The BIPS covers 2/3 of the national territory: 5 million km2 The BIPS supplies about 98% of the country’s electricity consumption. Hydro generation is dominant: about 79% of the installed capacity Thermal generation is complementary with diversity of fuels: nuclear, coal, natural gas, oil, diesel (about 16%) Small share (about 5%) of other renewable energies: wind and biomass Main transmission grid with long distance lines (≥ 230 kV). Over 100,000 km of transmission lines Cemig Furnas AES-Tiete CESP CDSA Consórcios Copel Tractebel ITAIPU BINATIONAL Grande River Paranaiba River Tiete River Paranapanema River Iguaçu River Utilities

5 Brazilian Interconected Power System - BIPS
Multi-owned: 97 agents own assets (≥ 230 kV) The Main Transmission Grid is operated and expanded in order to achieve safety of supply and system optimization Inter-regional and inter-basin transmission links allow interchange of large blocks of energy between regions, based on the hydrological diversity between river basins The current challenge is the interconnection of the projects in the Amazonian Region

6 Brazilian Electricity Supply in 2012
Source: Brazilian Energy Balance 2013 / year 2012 – MME/EPE

7 Wind Power Generation Penetration Degree Increase in the Brazilian Energetic Matrix

8 Regularization Capacity Evolution
Evolution of Cumulative Volume and of the Installed Power (hidro generation) in BIPS 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2014 Installed capacity - Hidro ( MW ) 30 60 90 120 150 180 210 240 270 300 330 Volume 1000 hm 3 Installed Capacity Useful Volume Três Marias 15. , . 10 Furnas Nova Ponte Serra da Mesa Emborcação Tucuruí Ilha Solteira e Três Irmãos 16 Marimbondo – 5.3 . Capivara Sobradinho – São Simão 5 Á Vermelha 5. 2 Itumbiara – Growth Between Installed Power > 47 % 8 The 13 largest reservoirs identified in the figure have useful volume greather than 5 x 103 hm3, and together account for 74% of total accumulated volume

9 Gradual Reduction of Regularization
2021 3.35 2001 2013 2015 2017 Ratio between stored energy / load 6.2 5.4 5.0 4.7 How many months of maximum energy storage Ten-year Plan*

10 The Expansion of Supply Between 2012 and 2017
TYPE 12/31/2012 12/31/2017 GROWTH MW % HIDRO(1) 89,521 77.9 107,491 73.8 17,970 20.1 NUCLEAR 1,990 1.7 1.4 0.0 N. GAS/L.N. GAS 9,808 8.5 13,054 9.0 3,246 33.1 COAL 2,125 1.9 3,210 2.2 1,085 51.1 BIOMASS(2) 4,948 4.3 5,875 4.0 927 18.7 OTHER(3) 749 0.7 0.5 OIL 4,048 3.5 4,821 3.3 773 19.1 WIND 1,762 1.5 8,477 5.8 6,715 381.1 TOTAL 114,951 100.0 145,667 30,716 26.7 Includes the participation of Itaipu and small hidro power plants; Includes small thermal power plants; The portion "OTHER" refers to other thermal plants with CVU.

11 Wind Generation Expansion in Southern
INSTALLED CAPACITY IN NOVEMBER 2012 621 MW (21 UEE) SC Água Doce Amparo Aquibatã Bom Jardim Campo Belo Cascata Cruz Alta Púlpito Rio do Ouro Salto Santo Antônio 231 MW RS Cerro Chato I Cerro Chato II Cerro Chato III Cidreira 1 Palmares Parque Eólico de Osório Parque Eólico de Sangradouro Sangradouro 2 Sangradouro 3 Parque Eólico dos Índios 390 MW Source: ANEEL

12 Wind Generation Expansion in Southern
INSTALLED CAPACITY IN DECEMBER 2015 1648 MW 621 MW (21 UEE) 1027 MW (43 UEE) SC Água Doce Amparo Aquibatã Bom Jardim Campo Belo Cascata Cruz Alta Púlpito Rio do Ouro Salto Santo Antônio SOMENTE EMPREENDIMENTOS COM OUTORGA 231 MW Atlântica I Atlântica II Atlântica IV Atlântica V Cerro Chato IV Cerro Chato V Cerro Chato VI Cerro dos Trindade Chuí I Chuí II Chuí IV Chuí V Corredor do Senandes II Corredor do Senandes III Corredor do Senandes IV Dos Índios 2 Dos Índios 3 Fazenda Rosário 2 Força 1 Força 2 Força 3 Giruá Ibirapuitã I Minuano I Minuano II Osório 2 Osório 3 Pinhal Pontal 2B REB Cassino I REB Cassino II REB Cassino III Vento Aragano I Verace I Verace II Verace III Verace IV Verace V Verace IX Verace VI Verace VII Verace VIII Verace X RS Cerro Chato I Cerro Chato II Cerro Chato III Cidreira 1 Palmares Parque Eólico de Osório Parque Eólico de Sangradouro Sangradouro 2 Sangradouro 3 Parque Eólico dos Índios 390 MW 1027 MW Source: ANEEL

13 Wind Generation Expansion in Northeast
18 MW PEDRA DO SAL PRAIA DO MORGADO VOLTA DO RIO 542 MW PRAIA FORMOSA AMONTADA PARACURU TAÍBA ALBATROZ PARQUE EÓLICO DE BEBERIBE FOZ DO RIO CHORÓ PRAIAS DE PARAJURU 373 MW BONS VENTOS CANOA QUEBRADA (RV) CANOA QUEBRADA ENACEL ICARAIZINHO MA ALEGRIA I ALEGRIA II MIASSABA III ARATUÁ MANGUE SECO 1 MANGUE SECO 2 MANGUE SECO 5 MANGUE SECO 3 CE INSTALLED CAPACITY IN NOVEMBER 2012 RN RIO DO FOGO CABEÇO PRETO CABEÇO PRETO IV ALBATROZ MILLENIUM ATLÂNTICA CAMURIM CARAVELA COELHOS II COELHOS I COELHOS III COELHOS IV MATARACÁ VITÓRIA PRESIDENTE 66 MW 1154 MW (50 UEE) PI PB ALHANDRA PIRAUÁ XAVANTE PE GRAVATÁ MANDACARU SANTA MARIA 25 MW AL SE 35 MW Barra dos Coqueiros BA MACAÚBAS NOVO HORIZONTE SEABRA 95 MW Source: ANEEL

14 Wind Generation Expansion in Northeast
432 MW Marco dos Ventos 1 Marco dos Ventos 2 Marco dos Ventos 4 Marco dos Ventos 3 Marco dos Ventos 5 Ventos do Norte 1 Ventos do Norte 10 Ventos do Norte 3 Ventos do Norte 2 Ventos do Norte 4 Ventos do Norte 5 Ventos do Norte 6 Ventos do Norte 7 Ventos do Norte 8 Ventos do Norte 9 18 MW 59 MW PEDRA DO SAL PRAIA DO MORGADO VOLTA DO RIO 542 MW 1249 MW Araras Boca do Córrego Cajucoco Buriti Cataventos Paracuru 1 Colônia Coqueiro Embuaca Dunas de Paracuru Faisa I Faisa II Faisa III Faisa V Faisa IV Fleixeiras I Garças Guajirú Icaraí Icaraí I Icaraí II Ilha Grande Jandaia I Jandaia Junco I Junco II Lagoa Seca Mundaú Malhadinha I Pau Brasil Pau Ferro Pedra do Gerônimo Porto Salgado Planalto da Taíba Potengi Quixaba Ribeirão São Paulo Tacaicó Taíba Águia Trairí Taíba Andorinha Vento do Oeste Vento Formoso Ventos de Horizonte Ventos de Santo Inácio Ventos de Santa Rosa Ventos de São Geraldo Ventos de Tianguá Ventos de Sebastião Ventos de Tianguá Norte Ventos do Morro do Chapéu Ventos do Parazinho PRAIA FORMOSA AMONTADA PARACURU TAÍBA ALBATROZ PARQUE EÓLICO DE BEBERIBE FOZ DO RIO CHORÓ PRAIAS DE PARAJURU 373 MW 2559 MW BONS VENTOS CANOA QUEBRADA (RV) CANOA QUEBRADA ENACEL ICARAIZINHO MA ALEGRIA I ALEGRIA II ARATUÁ MIASSABA III MANGUE SECO 1 MANGUE SECO 2 MANGUE SECO 3 MANGUE SECO 5 INSTALLED CAPACITY IN DECEMBER 2015 7738 MW CE RN RIO DO FOGO CABEÇO PRETO CABEÇO PRETO IV ALBATROZ MILLENIUM ATLÂNTICA CAMURIM CARAVELA COELHOS II COELHOS I COELHOS III COELHOS IV MATARACÁ VITÓRIA PRESIDENTE 66 MW PI PB ALHANDRA PIRAUÁ 1154 MW (50 UEE) 6584 MW (210 UEE) XAVANTE PE GRAVATÁ MANDACARU SANTA MARIA 25 MW 78 MW AL Aratuá 3 Areia Branca Arizona I Asa Branca II Asa Branca I Asa Branca III Asa Branca IV Asa Branca V Asa Branca VII Asa Branca VI Asa Branca VIII Caiçara 2 Caiçara do Norte Calango 2 Calango 1 Calango 3 Calango 4 Calango 5 Campos dos Ventos II Carcará I Carcará II Carnaúbas Dreen Boa Vista Costa Branca Dreen Cutia Dreen Guajiru Dreen Olho d'Água Dreen São Bento do Norte Eurus I Eurus II Eurus III Eurus VI Eurus IV Famosa I Farol GE Jangada Juremas GE Maria Helena Lanchinha Macacos Mar e Terra Miassaba 3 Mel 02 Miassaba 4 Modelo I Modelo II Morro dos Ventos II Morro dos Ventos I Morro dos Ventos III Morro dos Ventos IV Morro dos Ventos IX Pelado Morro dos Ventos VI Pedra Preta Reduto Rei dos Ventos 1 Rei dos Ventos 3 Rei dos Ventos 4 Renascença I Renascença II Renascença IV Renascença III Renascença V Riachão I Riachão II Riachão VI Riachão IV Riachão VII Santa Clara I Santa Clara II Santa Clara IV Santa Clara III Santa Clara V Santa Clara VI Santa Helena Santo Cristo São João Serra de Santana I Serra de Santana II Serra de Santana III SM União dos Ventos 10 União dos Ventos 1 União dos Ventos 2 União dos Ventos 3 União dos Ventos 4 União dos Ventos 6 União dos Ventos 5 União dos Ventos 7 União dos Ventos 8 União dos Ventos 9 Ventos de São Miguel Ventos de Santo Uriel SOMENTE EMPREENDIMENTOS COM OUTORGA SE 35 MW Barra dos Coqueiros BA MACAÚBAS NOVO HORIZONTE SEABRA 95 MW 1144 MW Alvorada Ametista Angical Caetité Borgo Caetité 2 Caetité 3 Caititu Coqueirinho Candiba Corrupião Cristal Da Prata Dourados Dos Araçás Emiliana Espigão Guanambi Igaporã Guirapá Ilhéus Inhambu Licínio de Almeida Joana Maron Morrão N. Sra. da Conceição Pedra Branca Pajeú do Vento Pedra do Reino Pedra do Reino III Pelourinho Pilões Pindaí Planaltina Porto Seguro Primavera São Judas Rio Verde São Pedro do Lago Seraíma Serra do Salto Serra do Espinhaço Sete Gameleiras Tanque Tamanduá Mirim Teiu Ventos do Nordeste Source: ANEEL

15 Characteristics of Wind Power Plants in Brazil

16 Renewable Sources Connection to the Grid
The connection to the bulk power system is made through Renewable Generators Collection System Sub-Grid (ICG) The use of ICG and IEG represent a reduction in the grid connection costs, but also represents an engineering challenge... Source: L. A. Barroso, F. Porrua, R. Chabar, M. V. Pereira and B. Bezerra, Incorporating Large-Scale Renewables to the Transmission Grid: Technical and Regulatory Issues - IEEE PES General Meeting 2009, Calgary, Canada

17 Wind Farms ICG Connection - Igapora II ICG
There are 13 wind farms connected to the Igapora II ICG

18 Energetic Complementarity of Hidro, Wind and Biomass
Reservoirs of hydro power plants and the transmission grid may be used to modulate the production of wind and sugarcane biomass plants (no back up natural gas generation is necessary as in other countries) During the dry season, wind and biomass power plants may “return the favor” to hydro plants (functioning as a virtual reservoir)

19 Wind Characteristics in Brazil Northeast and Southern

20 Major Challenges for the Increase of Wind Generation Penetration Degree in the Brazilian Interconnected Power System

21 Major Challenges with High Wind Penetration Degree
The sites in Brazil with highest winds are located in the Northeast and Southern of Brazil. These regions are characterized by low short circuit ratio (SCR) and low inertia, often requiring network reinforcements for the correct performance of wind generators. This also provokes different power flow patterns in the presence of high wind generation penetration degree - transmission systems must be adapted to this new paradigm. Wind generators must be capable to participate in voltage control in weak networks efficiently, even when producing little or no active power at all. The network must be prepared to handle a higher amount of generation loss, for example, when the wind in a given area reduces very fast. Normally wind generation does not contribute to the inertia of the system.

22 Ongoing Improvements Necessary to Connect Wind Farms to Grids with High Wind Generation Penetration Degree

23 Ongoing Improvements for High Wind Penetration Degree
Set Strategies for Power Reserves With the increase of wind generation penetration degree, a strategy must be set, to create a power reserve in the case, for example, if the wind reduces in a fast way. Scheduling and real time actions to maintain and restore system reserves. Improved Wind Forecast The improved wind forecast will allow a more precise Power Reserve calculation, reducing operation costs.

24 Ongoing Improvements for High Wind Penetration Degree
Improved Supervision of Wind Farms Set supervision requirements to monitor wind geration production. Need to set dispatch centers to concentrate operation communication among Power System Operator and wind plants groups. Harmonic Distortion and Voltage Fluctuation Implement electric energy quality indicators, mainly the ones for harmonic distortions and voltage fluctuation.

25 Ongoing Improvements for High Wind Penetration Degree
Install Wind Generators Improved Dynamic Performance The technology utilized in wind generation is in fast evolution. This favors the secure increase of wind generation penetration degree in power systems. The grid codes must also evolve to take advantage of this fast technology development, in order to ensure the dynamic performance needed to the increasing penetration of wind generation. The technologies currently used in modern wind turbines are the Doubly Fed Induction Generator (DFIG) and Full-Converter.

26 Grid Codes Technical Requirements Improvements
Off-nominal Frequency Operation The wind generators must be capable to stay connected to the grid during system under/overfrequency disturbances. This requirement is specially important in underfrequency contingencies, when the outages of wind generators can compromise the correct operation of the load shedding scheme.

27 Grid Codes Technical Requirements Improvements
Reactive Power Control of Wind Farms Regarding this technical requirement the DFIG and Full-Converters wind generator technology provides a much higher reactive power generation / absorption capacity than the specified by the Brazilian Grid Code. The extended range that these two technologies allow, can improve voltage control of the system as a whole, enabling a higher penetration degree of wind generation.

28 Grid Codes Technical Requirements Improvements
Synthetic Inertia Asynchronous machines, such as variable speed wind generators, do not contribute to the inertia of the system (the rotating masses are not electrically connected to the system). This feature is currently under development by many wind generators manufacturers. Particularly in the Northeast sub-system, where it is expected a high penetration degree of wind power in a region with low inertia, this feature may contribute to the security of the system, possibly improving the operation of load shedding scheme.

29 Conclusions

30 Conclusions The connection of the large amount of wind generation in the BIPS predicted for this decade in a secure way is possible, since actions are taken from now on by all involved in the process. A detailed review of the Brazilian Grid Code is being carried on in Brazilian System Operator - ONS, to include new technical requirements that the new wind generation technologies allow. The work is being carried by GT Eolica Task Force. The control technologies available in DFIG and Full-Converter wind generators must be explored to its maximum to allow the safe operation of the system with high wind generation penetration degree. The Brazilian Grid Code, as well as the technical requirements for next auctions, must reflect, and take into account, the performance improvement for the network that can be achieved with the use of the new wind generator technologies.

31 Conclusions A careful network expansion planning must be done in a way to allow the safe connection of wind farms in areas of the system with low SCR and inertia. The most appropriate equipment to improve the performance of a system with these characteristics is the synchronous condenser. The improvement in the wind forecast models is mandatory to become wind generation more predictable, and thus become the Power Reserve calculation more precise. This will impact directly in the reduction of operation costs. Improvement in the centralized control wind generators in the wind farms to become the operation of the wind farms from the Control Center more friendly.

32 Thanks arteiro@ons.org.br / dirdpp@ons.org.br +55 21 2203-9899


Carregar ppt "Increasing Wind Power Generation Penetration Degree in Brazil: a Challenge for the Brazilian Interconnected Power System Francisco José Arteiro de Oliveira."

Apresentações semelhantes


Anúncios Google