A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Projeções Computação Gráfica. Projeções: conceitos  Linhas Projetantes emanam do centro de projeção, passam por cada ponto do objeto e intersectam o.

Apresentações semelhantes


Apresentação em tema: "Projeções Computação Gráfica. Projeções: conceitos  Linhas Projetantes emanam do centro de projeção, passam por cada ponto do objeto e intersectam o."— Transcrição da apresentação:

1 Projeções Computação Gráfica

2 Projeções: conceitos  Linhas Projetantes emanam do centro de projeção, passam por cada ponto do objeto e intersectam o plano de projeção, formando a projeção.

3 Projeções: conceitos  Projeção em perspectiva (ou cônica): centro de projeção é um ponto do espaço, a ser especificado. O objeto é deformado de forma inversamente proporcional à distância ao centro de projeção.  Projeção paralela (ou cilíndrica): centro de projeção no infinito (ponto ideal). Deve-se especificar um vetor, que é a direção da projeção. Pode ser usada para tomada de algumas medidas.

4 Projeções: conceitos  A projeção em perspectiva não preserva retas paralelas, com algumas exceções: retas paralelas contidas num plano paralelo ao plano de projeção. Ângulos são preservados também nesta situação.  A projeção paralela preserva retas paralelas; ângulos são preservados apenas em plano paralelos ao plano de projeção.

5 Projeções em perspectiva  Retas paralelas que não são paralelas ao plano de projeção convergem para um ponto de fuga. Retas paralelas se intersectam em pontos ideais. Assim, pontos de fuga podem ser vistos como a transformação de pontos ideais em pontos afins. A projeção propriamente dita, vista no espaço euclidiano mergulhado, se obtém com a normalização dos pontos afins. Existem infinitos pontos de fuga, um para cada possível direção de retas paralelas.

6 Projeções em perspectiva  Se o feixe de retas paralelas é paralelo ao algum dos três eixos principais, o ponto de fuga é dito axial. Podem existir, portanto, apenas três pontos de fuga axiais. Os pontos de fuga axiais aparecem no plano de projeção quando este corta um ou mais eixos principais.

7 Projeções em perspectiva

8

9

10 Projeções paralelas  Existem dois tipos de projeções paralelas:  Ortográfica  Oblíqua  Na projeção paralela ortográfica, as projetantes são normais ao plano de projeção, o que não acontece com a projeção paralela oblíqua.

11 Projeções paralelas  Os tipos mais comuns de projeções ortográficas são: vista frontal, lateral e superior. São importantes para desenhos de engenharia para representar partes de máquinas e prédios, pois as distâncias e os ângulos podem ser medidos a partir delas.

12 Projeções paralelas

13  Outro tipo de projeção ortográfica é a chamada axonométrica, que ocorre quando o plano de projeção não é ortogonal a algum eixo principal do sistema. Retas paralelas são projetadas em retas paralelas, mas os ângulos não são preservados. As medidas podem ser tomadas ao longo de cada eixo principal, em geral com um fator de escala distinto.

14 Projeções paralelas  Um tipo especial de projeção ortográfica axonométrica é a projeção isométrica. Trata-se de um caso especial em que o plano de projeção forma o mesmo ângulo com os três eixos principais. As projeções dos três vetores unitários canônicos formam ângulos de 120 o entre si. Isto permite que as medições feitas na projeção em cada eixo utilize a mesma escala.

15 Projeções paralelas

16  Outros tipos de projeções axonométricas: dimétricas (ex: 100,100,160) e trimétricas.  Projeções Oblíquas: as projetantes não são paralelas à normal ao plano de projeção. O plano de projeção é normal a algum eixo principal. Isto significa que projeções de faces paralelas a este plano preservam ângulos e distâncias.

17 Projeções paralelas

18  Projeções oblíquas permitem visões das faces superiores, frontais e laterais, e ainda permitem que medidas de distância possam ser tomadas em faces não paralelas ao plano de projeção, mas não ângulos. Geralmente as medidas de distância para estas faces têm um fator de escala associado.

19 Projeções paralelas  Os dois tipos de projeções oblíquas mais utilizados são: cavaleira e gabinete (cabinet). Na cavaleira as projetantes formam um ângulo de 45 o com o plano de projeção. Isto resulta no fato de que segmentos de reta ortogonais ao plano de projeção possuirão o mesmo comprimento que sua projeção.

20 Projeções paralelas

21  Na projeção paralela oblíqua gabinete as projetantes formam um ângulo de arctg(2)=63,4 o com o plano de projeção. A idéia deste ângulo é projetar segmentos de reta perpendiculares ao plano de projeção de forma a reduzirem seu tamanho à metade. Reúne as vantagens da cavaleira, mas um pouco mais realista. Deve haver um fator de escala =1/2 para medidas sobre retas perpendiculares ao plano de projeção.

22 Projeções paralelas

23  Uma forma de especificar a projeção oblíqua:

24 Projeções Planares

25 Modelos de Vista 3D  O modelo de vista 3D é a forma de especificar o volume de vista (paralelepípedo de vista ou pirâmide de vista) com o objetivo tanto de propiciar a projeção 2D adequada bem como do corte e enquadramento adequados. Nesta exposição daremos uma olhada nas abordagens e terminologias do sistema PHIGS (ANSI-88).

26 Modelos de Vista 3D  Plano de projeção = plano de vista  Ponto que fixa o plano = VRP (View Reference Point)  Normal ao plano = VPN (View Plane Normal)  O plano de vista pode ser colocado de forma arbitrária com respeito ao sistema mundial.  O sistema de vista é definido através de três vetores: n, v e u.

27 Modelos de Vista 3D O eixo n é dirigido pelo vetor VPN; o eixo v é definido como a projeção de VUP sobre o plano normal a este vetor. O eixo u é definido de forma a se obter um sistema de coordenadas da mão direita.

28 Modelos de Vista 3D

29  Define-se então o retângulo de vista, através da escolha das coordenadas mínimas e máximas. O retângulo de vista não precisa estar centralizado em relação ao VRP (CW).

30 Modelos de Vista 3D

31  PRP = Projection Reference Point  DOP = Direction of Projection

32 Modelos de Vista 3D  O parâmetro de câmera que define a projeção é o PRP e uma indicação do tipo de projeção: se o tipo pretendido é em perspectiva, então PRP é centro de projeção. Senão, DOP é o vetor de direção dada por CW e PRP.  O PRP é dado em coordenadas de vista, não mundiais. Vantagem: pode-se mover VUP ou VPN sem se recalcular o PRP; se a projeção é cavaleira, por exemplo, não há necessidade de se recalcular PRP/DOP para se manter a inclinação.

33 Modelos de Vista 3D  O volume de vista limita a parte do mundo que deve ser enquadrado e projetado no plano de vista. Para a projeção em perspectiva o volume de vista é uma pirâmide semi-infinita com vértice no PRP e arestas passando pelas extremidades do retângulo de vista.  Pontos atrás de PRP não são mostrados.  Na realidade, deveria ser um volume cônico, mas a pirâmide é mais tratável matematicamente.

34 Modelos de Vista 3D

35  Para a projeção paralela o volume de vista é um paralelepípedo com lados paralelos à direção de projeção. Ortográfica:

36 Modelos de Vista 3D  oblíqua:

37 Modelos de Vista 3D  Volumes:

38 Modelos de Vista 3D

39

40  Preparando para corte e projeção:  Projeção paralela(utilizando matrizes 4X4):  1.Transladar VRP p/ a origem.  2.Rotacionar VRC de tal forma a que o eixo n coincida com z o eixo u coincida com x e o eixo v coincida com o y.  3. Cisalhar de tal forma que a direção de projeção fique paralela ao eixo z.  4. Transladar e escalar o volume no volume normalizado.

41 Modelos de Vista 3D

42

43  Projeção em perspectiva:  1.Transladar VRP p/ a origem.  2.Rotacionar VRC de tal forma a que o eixo n coincida com z o eixo u coincida com x e o eixo v coincida com o y.  3. Transladar de forma a COP coincidir com origem.  4. Cisalhar de tal forma que a linha central do volume se transforme no eixo z.  5. Escalar o volume de vista no volume piramidal reto normalizado.

44 Modelos de Vista 3D

45

46

47  Corte 3D: determinação das partes da cena que estão dentro do volume de vista. Existem algoritmos de corte 2D, para arestas, que podem ser generalizados para faces contra paredes de um paralelepípedo retangular. Um algoritmo eficiente é o de Cohen – Sutherland: a cada vértice atribui-se uma palavra de 4 bits, onde cada bit carrega informação do vértice pertencer a algum semi-plano determinado por cada reta que suporta as arestas do retângulo de vista.

48 Modelos de Vista 3D Bit 1: y > y max Bit 2: y < y min Bit 3: x > x max Bit 4: x < x min Note que o bit 1 é o sinal de y max – y ; o bit 2 é o sinal de y – y min ; o bit 3 é o sinal de x max – x e o bit 4 é o sinal de x – x min.

49 Modelos de Vista 3D  O algoritmo testa o código para saber se pode rejeitar ou aceitar trivialmente o segmento. Senão, ele escolhe uma aresta (o código indica) e encontra a interseção com o segmento. Então ele rejeita a parte exterior do segmento ao substituir o vértice exterior pelo ponto de interseção. O código também diferencia o lado exterior do lado interior. O algoritmo então calcula o código do novo vértice e vai para a próxima iteração.

50 Modelos de Vista 3D  Outros algoritmos, como o de Cyrus-Beck e o de Liang-Barsky utilizam retas paramétricas e o produto escalar para determinação de visibilidade de cada segmento. Eles são algoritmos mais modernos e geralmente mais eficientes que o de Cohen- Sutherland. Todos estes algoritmos se estendem para o paralelepípedo retangular. No caso o paralelepípedo é normalizado: [-1,1] X [-1,1] X [0,1]

51 Modelos de Vista 3D  O código passa a ter 6 bits :  Paralela: Bit 1: y > 1 Bit 2: y < -1 Bit 3: x > 1 Bit 4: x < -1 Bit 5: z < -1 Bit 6: z > 0

52 Modelos de Vista 3D  Perspectiva: Bit 1: y > -z Bit 2: y < z Bit 3: x > -z Bit 4: x < z Bit 5: z < 0 Bit 6: z > z max

53 Modelos de Vista 3D  Fazendo o corte em coordenadas homogêneas:  Razões: eficiência, já que os algoritmos para paralelepípedo retangular são mais eficientes; também são implementados (pelo menos a parte central) em hardware; o corte pode não ser feito corretamente para operações homogêneas não usuais, como o que pode ocorrer com nurbs.

54 Modelos de Vista 3D  A transformação do volume piramidal no paralelepípedo pode é projetiva, ou seja, pode ser representada no bloco de perspectiva da matriz 4x4, seguida de uma normalização para pontos afins. Para simplificar o entendimento, utilizaremos o modelo 3D do livro de A. Watt /M. Watt.

55 Modelos de Vista 3D

56  Para transformar este tronco de pirâmide no paralelepípedo canônico, deve-se aplicar uma transformação de coordenadas de vista para coordenadas de tela, que apresenta uma divisão de x e y por z. A transformação visa a facilitar as operações de corte, interpolação linear e ordenação de profundidade (z-buffer) para visibilidade. Newman and Sproul ‘73 mostraram que a coordenada z deve ser transformada através de uma expressão do tipo: z s =A + B/z e

57 Modelos de Vista 3D  Esta transformação de z leva retas em retas e planos em planos. Ela também preservará a orientação da profundidade, desde que B 3D):

58 Modelos de Vista 3D

59  Para a transformação ser incorporada na matriz 4x4, devemos separar a parte linear da não linear, utilizando as coordenadas homogêneas, em dois passos: x =x e, y =y e, z=(hFz e )/[D(F-D)] – hF/(F-D) w=hz e /D E aí segue-se o passo da divisão de perspectiva: x s =x/w, y s = y/w, z s = z/w. Esta é uma normalização de ponto afim.

60 Modelos de Vista 3D  A matriz da parte linear da transformação então fica assim:


Carregar ppt "Projeções Computação Gráfica. Projeções: conceitos  Linhas Projetantes emanam do centro de projeção, passam por cada ponto do objeto e intersectam o."

Apresentações semelhantes


Anúncios Google