A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aula Teórica 13 Equação da Continuidade e Equação de Navier-Stokes.

Apresentações semelhantes


Apresentação em tema: "Aula Teórica 13 Equação da Continuidade e Equação de Navier-Stokes."— Transcrição da apresentação:

1 Aula Teórica 13 Equação da Continuidade e Equação de Navier-Stokes

2 Mass conservation Principle Mass is conserved. This implies that the rate of accumulation inside a volume balances the input and output budgets:

3 Em incompressível

4 Interpretation The total derivative is proportional to the local velocity divergence. As the fluid moves its density changes according to the local divergence. If it is negative there is contraction consequently the density increases. The local derivative is proportional to the local mass flux divergence. Meaning that ion a local infinitesimal volume the rate of change of density is proportional to the incoming flux minus the outgoing flux. If these fluxes balance there is no mass accumulation and consequently there is no change of local density. If the fluid is incompressible there is no accumulation and the density entering and leaving are equal. As a consequence there is no production. If the flow is stationary the local derivatives are null. In this case the advection, i.e. the rate at which the property leaves minus the rate at which it enters balances the local production (i.e. the difference between what leaves and enters is the production)

5 Equation could be obtained from The Reynolds theorem states that:

6 Momentum conservation One must evaluate the forces per unit of volume. =>

7 Pressure force resultant

8 Force resultant (including friction and weight)

9 Summing up This is the Momentum transport equation into its differential form. It states that the fluid acceleration is the result of the 3 forces (pressure, friction and gravity).

10 Case of Momentum This is the Navier-Stokes Equation, i.e., the Momentum evolution equation of a Newtonian fluid. Replacing in the momentum evolution equation: One gets:

11 Viscosidade Friction force (shear) along a surface appears when molecules from one side cross to the other and velocities on both sides are different. The gradient responsible for shear is the velocity gradient and not the gradient of momentum. Velocities being different on both sides of the surface require the velocity of the “migrating molecules” to change sharing momentum with the local molecules. As a consequence local velocity changes and momentum changes as well. The change of velocity generates a inertia force proportional to the density. Thus the diffusive flux of momentum is equal to the diffusive flux of velocity multiplied by the density:

12 synthesis The shear stress is the diffusive flux of momentum per unit of area; Shear stress is tangent to the velocity and momentum flux is normal to the velocity. Each velocity component can change in 3 space directions and thus shear stress can have 9 components.

13 Síntese A tensão de corte é o fluxo difusivo de quantidade de movimento. A tensão de corte é tangente à velocidade e origina um fluxo de quantidade de movimento perpendicular à velocidade, no sentido contrário do gradiente de velocidade. A velocidade tem 3 componentes e por isso o seu gradiente tem 9 (cada uma das 3 componentes pode variar nas 3 direcções do espaço).

14 Pensemos num volume infinitesimal com a forma de um cubo e na componente “1” da velocidade (representada a verde). Esta componente pode varia na direcção “1”, na direcção “2” e na direcção “3”, dando origem respectivamente às tensões

15 Estas tensões actuam nas faces do cubo, cujas normais não na direcção “1”, ou “2”, ou “3”. Existem duas faces para cada uma das direcções. A resultante das forças é a diferença entre as tensões que actuam em faces correspondentes, que por unidade de volume dá: A convenção de sinais é: o que entra é positivo.

16 Como determinar as tensões? São proporcionais ao gradiente de velocidade, Não pode haver efeito de pressão (a força é tangencial): E o momento resultante sobre um volume de controlo tem que ser nulo (caso contrário teria aceleração angular).

17 Caso geral O sistema de tensões segundo x criaria um binário. Para o equilibrar tem que haver outro binário equilibrado por tensões iguais segundo y.

18 Expressão geral da Tensão de corte Quando i=j esta expressão dá a divergência da velocidade, que se o fluido for compressível tem que ser anulada. A expressão geral fica:


Carregar ppt "Aula Teórica 13 Equação da Continuidade e Equação de Navier-Stokes."

Apresentações semelhantes


Anúncios Google