A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Astronomia no Brasil.

Apresentações semelhantes

Apresentação em tema: "Astronomia no Brasil."— Transcrição da apresentação:

1 Astronomia no Brasil

2 Observatório Astrofísico Brasileiro 1980
Telescópio de 1,6 m de diâmetro em Brasópolis, MG

3 LNA - Observatório do Pico dos Dias

4 Telescópio 1,6 m Perkin-Elmer

5 Telescópio 0,6 m Zeiss 1983

6 Telescópio 0,6 m Boller & Chivens IAGUSP
1992 no OPD

7 INPE Radiotelescópio GEM (Galactic Emission Mapping). Desde 1998 em Cachoeira Paulista: 408 MHz, GHz, 2.3 GHz, 5 GHz e 10 GHz.

8 Experimentos do INPE Telescópio BEAST (Background Emission Anisotropy Scanning Telescope), que tem como objetivo mapear anisotropias e Polarização na Radiação Cósmica de Fundo em microondas. Telescópio imageador de raios-X e gama MASCO (MAScara COdificada). Opera entre 50 keV e 1.8 MeV.

9 Gemini: 2 telescópios de 8m (Brasil tem 2,5%)
Mauna Kea: Hawaii 2000 Cerro Pachon: Chile 2001

10 Gemini 8m - 2,5% do Brasil Chile Hawaii

11 Gemini Norte

12 Interior do Gemini Norte
Plutão e Caronte, com resolução de 0,08”

13 SOuthern Astrophysical Research telescope
Brasil tem 30% do telescópio de 4,2 metros de diâmetro 2003


15 SOAR João Evangelhista Steiner


17 Cerro Pachon: Gemini e Soar


19 200 doutores + 250 estudantes de mestrado e doutorado
IF-UFRGS 9 doutores + 4 PD PG + 12 IC (1983-> 41M e 18D) IAG-USP 35 doutores prof + 14 PD e visitantes + 50 PG (30 anos:149M+109D) ON-Rio 22 doutores + 7 PD e visitantes + 20 PG INPE 18 doutores + 7 PD e visitantes + 28 PG UFRJ 17 doutores (graduação já formou 120 alunos) UFRN 7 doutores + 10 PG UFMG 6 doutores + 5 PG UFSM 4 doutores UFSC 3 doutores + 2 PG LNA 7 doutores UEFS-Bahia 2 doutores UFES - 2 doutores Londrina, Curitiba, São Carlos, UCS, UEG,...

20 Instrumentation Program

21 Optical Imager – Science
Capabilities: Small field (5.5 x 5.5 arc min) 4K UV-blue optimized Lincoln Labs CCDs UV optimized optics tip-tilt guider Filters Johnson-Cousins UBVRI SDSS uvgri Stromgren uvby filter sets narrow band shared with CTIO Science niche: High resolution, high precision photometry Efficient – fast readout (< 10s) helps. Competitors: Blanco: 10 x faster than Blanco Mosaic to given S/N in U band, factor 3 in BVRI under median seeing conditions, another factor 2 in 25 percentile seeing Gemini GMOS same field, similar scale, 40 surfaces cf 14, poor in UV HST WFC3 FOV 0.25 x SOI, 0.04” pixels, also UV-optimized

22 OSIRIS Ohio State InfraRed Imager/Spectrometer) imager (JHKKs22000A)
Early Science Instrument Ohio State InfraRed Imager/Spectrometer) imager (JHKKs22000A) spectrometer (R~1200 or 3000). l~0.9 to 2.4 microns 1024x1024 HAWAII HgCdTe array Already a scientifically productive instrument. Will be fully integrated with SOAR before 1st (Nasmyth) Light

23 Possible Early Science Instrument
Phoenix Installed & working on Gemini-S Successful Engineering & Demo science runs in Dec 01 and Jan 02 Scheduled for regular science use 02/ /02 Largely independent installation at SOAR Electronics & Control Components exist to for dedicated data system Mechanical modifications Just a simple 1” thick adapter plate Cryogenics He Lines installed in facility per specification “spare” CTIO cryo-cooler pump checked out All this will be checked out in advance during “Science First” period Possible Early Science Instrument Available to SOAR 02/03 – 05/03

24 Phoenix Science The First High Resolution IR Spectrometer in the South
On Gemini-S Stars with K < 10 require a few minutes integration ….. …. but 30m of set up time !!!! Set up time dominates There are many BRIGHT southern targets needing high resolution spectroscopy Done more efficiently on SOAR Joint Programs SOAR does the bright objects Gemini the faint Example Science Projects Orbits & Line profiles of Pre-Main Sequence Stars Line profiles of interacting binaries Abundances field stars LMC/SMC supergiants, Carbon Stars, Post-AGB stars Galactic center stars (K~7) ISM – e.g H2, C/O isotopes Comets (Gemini can’t move fast enough) Kinematic studies of variable stars Mapping of circumstellar shells CO can be detected off the star & the mass distribution mapped

25 Goodman HTS – Status Optics
Final optical design delivered, at long last, by Epps Fabrication by Coastal Optical underway Delivery scheduled for 09/02 Restarting efforts on ADC design …. slowly Mechanical Assemblies for gratings, moving camera, filter wheels, camera focus, collimator focus all finished or near finished Dewar design finished, not yet constructed Design of slit mask changer underway Detector integration Out contracting to CTIO CCD mounting Integration with SDSU-II controller, test & optimization

26 IFU Spectrometer – Status
Integral Field Unit 1500 fibers

27 Spartan IR Camera — Performance
Image Size Optical quality: Instrument degrades Strehl by H Detectors 2 at first light f/21: 1.5’×3.0’ with 0.043” pixel f/12: 2.5 ’×5.0’ with 0.073” pixel Brazilians will purchase 3rd PSF w/ Median Seeing

28 Spartan IR Camera — Science
Fornax Globular Clusters and the Formation of the Halo (H Smith) The Milky Way halo, including its globular clusters, may be made partially of accreted dwarf galaxies. Are globular clusters in Fornax and MW similar? IR and optical photometry will be used to determine the properties of RR Lyrae stars in the Fornax globular clusters, whose core radii 5”. Number density and physical characteristics of very red galaxies (S Zepf) What is the formation epoch of elliptical galaxies? Absence of young stars or presence of dust  red galaxy. Image quality of SOAR can distinguish between old and newly formed, dusty, and irregular galaxies. At depth approaching the formation epoch, density of red galaxies with regular morphology should decline, and density of red, irregular galaxies should increase. Supernovae at z=2 (E Loh) Are supernovae at z  0.5 and 2 alike? Number of SN is larger in the IR than in the visible because vol  z3 [z(J band)/z(R band)]3=(2.7)3=20 In 8hr, expect 4 SN with z>1 for (,L)=(0.2,0.8) Spectra are feasible with AO on 8-m telescope Number of SN in a 4-hr Exposure with 4-detector Camera

29 MIT/LL CCD procurement
MBE process 7 potential Science grade devices so far, with 3 more in pipeline, from 10 wafers finished so far. Will be mounted & characterized at UH over next month First distribution should take place by end of April We may get 1 device from this batch All MBE wafers so far have “Real Teal” red AR coating Lower UV QE (but better than BIV), no fringing in red  IFU Final lot in MBE processing now Some of these will have blue/UV optimized coatings  imager and HTS Engineering Grade CCD If yield holds will provide the CCDs we need

30 Seeing & All Sky Monitors
Seeing Monitors (DIMMs) Key tool for commissioning & efficient science operations CTIO copy now in routine service Fully automatic operation Attacking low level unreliability issues Building 2 copies for SOAR One fixed  site seeing monitor for CP One portable for inside/outside comparisons Installed once heavy construction activity on site is over All Sky Camera Key tool for efficient science operations CTIO copy now in routine service FLI 1k² CCD camera + Nikon f/2.8 8mm 180° fisheye lens All sky image every 20s (1800 frames/night) Detects clouds, airglow, aircraft …. SOAR copy CCD camera & wide angle lens in hand Installed once heavy construction activity is over

31 Rede de dados Observação remota necessita de transferência de imagens em tempo real, tanto de controle de telescópio, condições climáticas e instrumentais, quanto de imagens científicas.

32 Projetos: Corot COnvection ROtation and planetary Transits
Satélite Frances a ser lançado em 2006, colaboração com Brasil. Busca de planetas extraterrestres Asterosismologia

33 Projetos: SKA Square Kilometer Array Custo: 1 bilhão de dólares
15 países Parâmetro Projeto Área efetiva/Temperatura do sistema 2 x 104 m2/K Freqüências de operação GHz Campo de visão 1 1.4GHz Resolução angular 0.1 seg. 1.4GHz  Número de canais espectrais 104 Range dinâmico 1.4 GHz Pureza de polarização -40 dB 

34 Projetos: ligar ROEN a eVLBI
14,2m Fortaleza

35 ROEN A tecnologia utilizada é rádio-astronômica. Os quasares, situados a bilhões de anos-luz de distância, constituem fontes de rádio de referência. Com dois ou mais rádio-telescópios de uma rede observando simultaneamente, obtêm-se a interferência das ondas de rádio. A observação destes objetos ou "balisas" celestes por vários rádio-telescópios de uma rede de milhares de quilômetros permite a determinação de posições absolutas na superfície da Terra, com precisão inferior a um centímetro. Dadas as grandes distâncias que separam os terminais desta rede, denomina-se o método de VLBI (de "very long baseline interferometry": interferometria de muito longa linha de base). A base de tempo é maser de H. A European VLBI correlaciona os dados diretamente, sem armazenar em disco. Primeira imagem em 28 abril/2004, de uma lente gravitacional. Uma banda em 5 GHz, com 2 bits, resultou em uma taxa de transferência de 32Mb/s, por 2h. Projeto: 1 Gbps até 2004 e 30 Gbps por telescópio até 2007

Carregar ppt "Astronomia no Brasil."

Apresentações semelhantes

Anúncios Google